

PACIFIC EQUITY PARTNERS PTY LTD

Detailed Site Investigation

242-244 Young Street, Waterloo NSW

Report E23915.E02_Rev0 18 October 2018

REPORT DISTRIBUTION

Detailed Site Investigation 242-244 Young Street, Waterloo NSW

El Report No.: E23915.E02_Rev0 Date: 18 October 2018

Copies		Recipient	
1	Soft Copy (PDF – Secured, issued by email)	Pacific Equity Partners Pty Ltd Level 1, 106 Alexander St, CROWS NEST NSW 2065	
	Original (Saved to Digital Archives)	El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	

Author

1227

S. forte

Technical Reviewer

CHRIS SORDY Engineering Geologist – Project Coordinator		NATHAN FOSTER Senior Environmental Scientist	
Revision	Details	Date	Amended By
0	Original	18 October 2018	-

© 2018 El Australia (El)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

Background

Pacific Equity Partners Pty Ltd engaged El Australia (El) to conduct a Detailed Site Investigation (DSI) for the former commercial property located at 242-244 Young Street, Waterloo NSW ('the site'). This environmental assessment was completed as part of a development application process through Inner West Council to allow site development for mixed residential apartment and commercial building with basement car parking.

Objectives

The main objectives of the assessment were to:

- Characterise site environmental conditions in relation to the nature, degree and sources of any soil, vapour and groundwater impacts;
- Target potentially impacted areas identified during the preliminary stages of the assessment for intrusive investigation;
- Understand the influence of site specific, geologic and hydrogeological conditions on the potential fate and transport of any impacts that may be identified;
- Evaluate potential risks that identified impacts may pose to human health and the environment; and
- Where site contamination is confirmed, provide data to assist in the selection and design of appropriate remedial options.

Findings

The work was conducted with reference to the regulatory framework outlined in **Section 1.3** of this report and assessment findings indicated the following:

- The site comprised an irregular shaped block covering a total area of approximately 4,500m². The site was bound by a construction site (north), Young Street (east), Powell Street (South) and Hunter Street (west).
- The site was free of statutory notices issued by the NSW EPA/DECC;
- SafeWork NSW records confirming the historical presence of UST's at this property. There is no information pertaining if the tanks have been removed from the site. There are some uncertainties of where some of the previous locations of the tanks mentioned are located.
- Soil sampling and analysis were conducted at ten (10) targeted test bore locations (BH1M, BH9M, BH10M and BH2-BH8) down to a maximum depth of 5.5 mBGL. Sampling regime was considered to be appropriate for investigation purposes and comprised a targeted sampling approach as a systematic sampling pattern could not be undertaken due to onsite obstructions;
- The sub-surface layers comprised a layer of granular and cohesive filling overlying cohesive residual soils, with sandstone bedrock below the residual soils;
- Groundwater was encountered during monitoring at depths ranging from 2.60 to 3.29 meters BTOC;

- Soil samples identified the following contaminants at concentrations above the adopted soil investigation levels:
 - o BH1M nickel, zinc, carcinogenic PAHs, F2 and F3
 - o BH9M zinc
 - BH10M copper, lead and zinc
- Groundwater samples identified the following contaminants at concentrations above the adopted groundwater investigation levels:
 - o BH1M & BH10M copper and zinc
- On review of the Preliminary Conceptual Site Model (CSM) developed as part of this ESA, it was concluded that the model remains valid for the proposed development.

Conclusions and Recommendations

Based on the findings of this report and with consideration of the Statement of Limitations (**Section 13**), EI concludes that widespread contamination was not identified at the site.

It is concluded that the site can be remediated to a standard sufficient for proposed use of mixed commercial/retail and residential purposes as outlined in the proposed development plan. The remediation should follow demolition of the buildings and be undertaken in accordance with a remedial action plan to address the potential USTs that could be present onsite and any unknown or unexpected contamination identified during the demolition and excavation.

It is assumed that during the proposed construction of a basement level car park as part of the development, all fill and residual soil materials will be removed from the site, therefore in view of the above findings and in accordance with the NEPM 2013 guidelines, it is considered that the site will be made suitable for the proposed residential development on completion of the following recommendations:

- Conduct a Hazardous Materials Survey (HMS) of current site structures. El recommend that a HMS is conducted prior to demolition of site structures;
- An additional site investigation (ASI) should be undertaken to close additional data gaps identified during this investigation. This would include:
 - The re-purging of the groundwater monitoring wells is to be undertaken before an additional round of groundwater sampling collected and tested for contaminants of concern (including PFAS);
- A Remedial Action Plan (RAP) should be prepared in accordance with the NSW Office of Environment and Heritage (2011) *Guidelines for consultants reporting on contaminated sites* prior to the commencement of site works. The RAP will provide details of the methodology and procedures required for effective site remediation, which may include:
 - A site inspection is to be complete after demolition by a qualified environmental consultant, to determine if addition sources of environmental concern can be identified;

- GPRS survey is to be conducted to identify location of potential UST infrastructure onsite;
- Removal and validation of potential UST's present at the site. If no evidence of validation is available, further detailed investigation may be required to confirm the contamination status of the property and its suitability for residential land use;
- Additional soil sampling to confirm the absence of PFAS compounds within soil. If additional investigation indicate the presence of PFAS compounds, impacted soils should be removed and excavations validated;
- If additional groundwater sampling indicates the presence on contaminants at significantly elevated concentrations, three soil vapour wells should be installed at targeted locations across the site footprint, above the depth of groundwater, after the completion of demolition;
- Any material being removed from site (including virgin excavated natural materials (VENM)) should be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines;
- Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM;
- Preparation of an unexpected finds protocol for implementation following demolition and during site excavation to ensure any potential contamination sources (e.g. soil staining, asbestos) that maybe identified are managed in accordance with the NSW EPA legislation and guidelines; and
- Preparation of a final site validation report by a qualified environmental consultant, documenting the suitability of site environmental conditions for the proposed development.

CONTENTS

EXE	ситіv	E SUMMARY	I
1.	INTE	RODUCTION	1
••	1.1	BACKGROUND AND PURPOSE	1
	1.2	PROPOSED DEVELOPMENT	1
	1.3	Regulatory Framework	1
	1.4	PROJECT OBJECTIVES	2
	1.5	SCOPE OF WORKS	2
2.	SITE	DESCRIPTION	4
	2.1	PROPERTY IDENTIFICATION, LOCATION, AND PHYSICAL SETTING	4
	2.2	SURROUNDING LAND USE	4
	2.3	REGIONAL SETTING	5
	2.4	GROUNDWATER BORE RECORDS AND GROUNDWATER USE	6
	2.5	SITE WALKOVER INSPECTION	6
3.	PRE	VIOUS INVESTIGATIONS	8
	3.1	AVAILABLE DOCUMENTS	8
4.	ADD	ITIONAL SITE HISTORICAL INFORMATION	9
	4.1	LAND TITLES INFORMATION / HISTORIC AERIAL REVIEW	9
	4.2	SURROUNDING LAND USE	12
	4.3	COUNCIL INFORMATION	13
	4.4	SAFEWORK NSW DATABASE SEARCH	14
	4.5	EPA Online Records	14
5.	CON	ICEPTUAL SITE MODEL	17
	5.1	CHEMICAL HAZARDS AND CONTAMINATION SOURCES	17
	5.2	PER OR POLY-FLUOROALKYL SUBSTANCES (PFAS)	17
	5.3	EMERGING CHEMICALS	18
	5.4	CONTAMINANTS OF POTENTIAL CONCERN	18
	5.5	POTENTIAL SOURCES, EXPOSURE PATHWAYS, AND RECEPTORS	19
	5.6	DATA GAPS	21
6.	SAM	IPLING, ANALYTICAL, AND QUALITY PLAN (SAQP)	22
	6.1	DATA QUALITY OBJECTIVES (DQO)	22
	6.2	DATA QUALITY INDICATORS	26
7.	ASS	ESSMENT METHODOLOGY	27
	7.1		27
	7.2		27
	7.3		27
	7.4	SOIL INVESTIGATION GROUNDWATED INVESTIGATION	30
~	7.5		52
8.	DAI		34
9.	RES	ULTS	35
	9.1	Soil Investigation Results	35
	9.2	GROUNDWATER INVESTIGATION RESULTS	36
	9.3	LABORATORY ANALYTICAL RESULTS	37
10.	SITE	CHARACTERISATION	41
	10.1	REVIEW OF CONCEPTUAL SITE MODEL	41
	10.2	CONFIRMED POLLUTANT LINKAGES	41
11.	CON	ICLUSIONS	42
12.	REC	OMMENDATIONS	44
13.	STA	TEMENT OF LIMITATIONS	46
	- 17A		40

REFERENCES

ABBREVIATIONS

TABLES (In Text)

TABLE 2-1	SITE IDENTIFICATION, LOCATION, AND ZONING	4
TABLE 2-2	SURROUNDING LAND USES	5
TABLE 2-3	REGIONAL SETTING INFORMATION	5
TABLE 2-4	SUMMARY OF REGISTERED WATER BORES WITHIN 1 KM OF THE SITE	6
TABLE 3-1	SUMMARY OF PREVIOUS INVESTIGATION WORKS AND FINDINGS	8
TABLE 4-1	SUMMARY OF OWNER HISTORY	9
TABLE 4-2	SUMMARY OF AERIAL PHOTOGRAPH HISTORY	11
TABLE 4-3	SUMMARY OF AERIAL PHOTOGRAPH REVIEW	12
TABLE 4-4	SUMMARY OF ONLINE COUNCIL RECORDS	13
TABLE 4-5	SUMMARY OF SAFEWORK RECORDS	14
TABLE 4-6	PROPERTIES LISTED ON THE CONTAMINATED LAND RECORD	15
TABLE 4-7	LAND NOTIFIED TO NSW EPA	15
TABLE 4-8	POEO PUBLIC REGISTER ENTRIES	16
TABLE 5-1	PFAS DECISION TREE	17
TABLE 5-2	EMERGING OR CONTROLLED CHEMICALS	18
TABLE 5-3	CONCEPTUAL SITE MODEL	20
TABLE 6-1	SUMMARY OF PROJECT DATA QUALITY OBJECTIVES	23
TABLE 6-2	DATA QUALITY INDICATORS	26
TABLE 7-1	ADOPTED INVESTIGATION LEVELS FOR SOIL	28
TABLE 7-2	ASSESSMENT OF GROUNDWATER ENVIRONMENTAL VALUES	29
TABLE 7-3	ADOPTED INVESTIGATION LEVELS FOR GROUNDWATER	30
TABLE 7-4	SUMMARY OF SOIL INVESTIGATION METHODOLOGY	31
TABLE 7-5	SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY	32
TABLE 9-1	GENERALISED SUBSURFACE PROFILE	35
TABLE 9-2	MONITORING WELL CONSTRUCTION DETAILS	36
TABLE 9-3	GROUNDWATER FIELD DATA	36
TABLE 9-4	SUMMARY OF SOIL ANALYTICAL RESULTS	37
TABLE 9-5	SUMMARY OF GROUNDWATER ANALYTICAL RESULTS	39
TABLE 10-1	POLLUTANT LINKAGES MODEL	41

TABLES

TABLE T1 SUMMARY OF SOIL ANALYTICAL RESULTS

TABLE T2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

FIGURES

- FIGURE 1 LOCALITY PLAN
- FIGURE 2 SAMPLING LOCATION PLAN

APPENDICES

APPENDIX A PROPOSED DEVELOPMENT PLANS

APPENDIX B GROUNDWATER BORE SEARCH

- APPENDIX C SITE PHOTOGRAPHS
- APPENDIX D HISTORICAL PROPERTY TITLES SEARCH
- APPENDIX E BOREHOLE LOGS

APPENDIX F FIELD DATA SHEETS APPENDIX G CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS APPENDIX H LABORATORY ANALYTICAL REPORTS APPENDIX I QA/QC ASSESSMENT APPENDIX J LABORATORY QA/AC POLICIES AND DQOS APPENDIX K SAFEWORK NSW RECORDS

1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

Mr John Wilkin of Bennet Murda Architects on behalf of Pacific Equity Partners Pty Ltd (the Client) engaged El Australia (El) to conduct a Detailed Site Investigation (DSI) for site characterisation at 242-244 Young Street, Waterloo NSW ('the site').

The site currently consists of a number of warehouse, office buildings and a car parking facility, which is located approximately 3.55 km south of the Sydney central business district (**Figure 1**). The site comprises multiple lots (Lot 1 in DP84655 and Lot A&B in DP161650) and is situated within the Local Government Area of City of Sydney Council, covering a total area of approximately 4,500 m², as depicted in the site aerial photo presented as **Figure 2**.

This assessment was conducted as part of an environmental due diligence process and this report is provided in support of a Development Application (DA) to City of Sydney Council and for the purpose of enabling the developer to meet its obligations under the *Contaminated Land Management Act 1997* (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

There has been a previous environmental site investigation conducted by SGA Environmental (Ref. Project No 93099, Dated September 2012). It is important to note that the report only was for the northern allotment of the site (Lot 1 in DP84655).

1.2 PROPOSED DEVELOPMENT

Based on development plans supplied by the Client, EI understands that the proposed redevelopment will include the demolition of existing structures and construction of a multi-storey mixed use structure (school, residential, and commercial/retail) overlying a basement car park.

Plans of the proposed development are included in Appendix A.

1.3 REGULATORY FRAMEWORK

The following regulatory framework and guidelines were considered during the preparation of this report:

- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- EPA (1995) Sampling Design Guidelines;
- EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd Edition);
- NEMP (2018) PFAS National Environmental Management Plan;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater,
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act 1997;
- State Environment Protection Policy 55 (SEPP 55) Remediation of Land, and

• OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 PROJECT OBJECTIVES

The primary objectives of this investigation were therefore to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;
- To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants; and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils and/or groundwater.

1.5 SCOPE OF WORKS

In order to achieve the above objectives, the scope of works was as follows:

1.5.1 Desktop Study

- A review of relevant topographical, geological, hydrogeological and soil landscape maps for the project area;
- Review of the previous site investigation report prepared by SGA (2012).
- Search of historical aerial photographs archived at NSW Land and Property Information to review previous site use and the historical sequence of land development in the neighbouring area;
- A land titles search, also conducted through NSW Land and Property Information for information relating to historical ownership of the site;
- A search of City of Sydney Council records for information relating to operational site history and/or relevant environmental incidents;
- A search of NSW EPA Land Information records under the *Contaminated Land Management Act 1997* and *Protection of the Environment Operations Act 1997*;
- A search of the Stored Chemical Information Database (SCID) and microfiche records held by SafeWork NSW relating to possible underground tank approvals and locations, and dangerous goods storages; and
- A review of existing underground services on site.

1.5.2 Field Work & Laboratory Analysis

- A detailed site walkover inspection;
- Drilling of boreholes at ten locations (BH1 to BH10) across the un-investigated accessible areas of the site. It is noted that ten boreholes were proposed as part of the site investigation, in accordance with the minimum sampling protocol recommended under EPA (1995);

- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the constructed groundwater monitoring bores. Two monitoring wells installed by SGA (2012) will also be used for groundwater sampling purposes; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation programme.

1.5.3 Data Analysis and Reporting

A DSI report would also be prepared to document desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. The report would also provide a record of observations made during the detailed site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. SITE DESCRIPTION

2.1 PROPERTY IDENTIFICATION, LOCATION, AND PHYSICAL SETTING

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Attribute	Description
Street Address	242-244 Young Street, Waterloo NSW
Location Description	Approx. 3.55 km south of Sydney CBD, an irregular shaped block bound by a construction site (north), Young Street (east), Powell Street (South) and Hunter Street (west).
Site Coordinates	Northeast corner of site (GDA94-MGA55):
	Easting: 334332.297
	Northing: 6247371.091
	(Source: http://maps.six.nsw.gov.au)
Site Area	Approx. 4,500 m ²
	(Source: http://maps.six.nsw.gov.au)
Site Owner	Pacific Equity Partners Pty Ltd
Lot and Deposited Plan (DP)	Lot 1 in DP84655 and Lot A&B in DP161650
State Survey Marks	Two State Survey Marks (SSM) are situated in close proximity to the site: SS53805 on McEvoy Street and SS16632 on the corner of Young Street and McEvoy Street
	(Source: http://maps.six.nsw.gov.au)
Local Government Authority	City of Sydney Council
Parish	Alexandria
County	Cumberland
Current Zoning	B4 – Mixed Use
-	(Sydney Local Environment Plan, 2012)
Current Land Uses	A number of warehouse, office buildings and a car parking facility

Table 2-1	Site Identification, Lo	ocation, and Zoning
-----------	-------------------------	---------------------

2.2 SURROUNDING LAND USE

The site is situated within an area of mixed land uses and current uses. Current uses of surrounding land are described in **Table 2-2**.

Direction Relative to Site	Land Use Description
North	Residential apartment blocks (under construction).
East	Young Street, followed by commercial properties.
South	Powell Street, followed by high density residential properties.
West	Powell Street, followed by high density residential properties.

Table 2-2 Surrounding Land Uses

2.3 REGIONAL SETTING

Regional topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Attribute	Description
Topography	The site generally lies flat, with a slight decline to the south west, towards Hunter Street (Ref. http://maps.six.nsw.gov.au)
Site Drainage	Site drainage is expected to be collected by an installed drainage system which discharges to the public wastewater network. The public network is expected to flow south-west towards Sheas Creek.
Regional Geology	The site directly overlies medium to fine grained "marine" sand with podsols, which is characterised by the deposits forming the Botany Sands (Ref. Geological Map Sydney 1:100,000 Geological Series Sheet 9130 DMR 1991).
	With reference to the Geological Survey of NSW Bulletin No.18 by R.J Griifin (1963), the site is located on aeolian dune sands associated with the Botany Basin. The site runs parallel to Cross Section 6, which shows a sequence of sands over fissured clays over Hawkesbury Sandstone. The Botany Basin basement contour map indicates the top of rock to be greater than 30 m.
	It is noted that the site is located within the Botany Sand Aquifer and the Botany Groundwater Management Zone 2 which bans domestic groundwater use.
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 1989) indicates that the site overlies an Aeolian Landscape – Tuggerah, which typically includes gently undulating to rolling coastal dune fields. It generally comprises deep (>2.0 m) red and brown podzolic soils on dunes and podzol/ humus podzol intergrade soils on swales
Acid Sulfate Soil Risk	With reference to the Botany Bay Acid Sulfate Soil Risk Map (1:25,000 scale; Murphy, 1997), the subject land lies within the map class description of <i>No Known Occurrence</i> . In such cases, acid sulfate soils (ASS) are not known or expected to occur and "land management activities are not likely to be affected by ASS materials".
	The Sydney Local Environmental Plan 2012- Acid Sulfate Soils Risk Class 1:1,000 scale Map indicates that the site lies within a <i>Class 5</i> ASS area. Council consent is therefore required prior to commencing any works within 500 m of Class 1, 2, 3 or 4 land, with a ground elevation of below 5 m Australian Height Datum (AHD) and where the water table is likely to be lowered below 1 mAHD on adjacent Class 1, 2, 3 or 4 land.
Likelihood & Depth of Filling	Fill materials are expected to be present at varying depths across the site associated with levelling of the site during construction of the existing structures.

Table 2-3 Regional Setting Information

Attribute	Description
Typical Soil Profile	The typical soil profile is expected to comprise fill materials of varying depths overlying cohesive residual soils on shale bedrock.
Depth to Groundwater	Based on previous investigations on the site conducted by SGA (2012), the average depth to groundwater is anticipated to be approximately 3.05 mBGL.
Groundwater Flow Direction	In view of the local topography, groundwater flow direction in the vicinity of the site is inferred to be towards Sheas Creek located approximately 800 m south-west of the site.
Nearest Surface Water Feature	Sheas Creek located approximately 800 m south-west of the site which then flows into Alexandra Canal. It is understood that Alexandra Canal is tidally influenced and is considered to be a marine system for impact assessment purposes.

2.4 GROUNDWATER BORE RECORDS AND GROUNDWATER USE

An online search of registered groundwater bores was conducted by EI on the 3 September 2018 through the NSW Office of Water (Ref. http:// realtimedata.water.nsw.gov.au/water.stm). There were 84 registered bores within about 500m of the site. A summary of the closest registered bores is presented with selected details in **Table 2-4**. A bore location plan and detailed information regarding the listed bores is attached in **Appendix B**.

Bore No.	Date Drilled	Drilled Depth (m)	SWL*/Salinity/Yield	Bore Purpose
GW111959	07/08/2012	6.00	2.60/ - / -	Monitoring
GW111960	07/08/2012	6.00	3.52/ - / -	Monitoring
GW109745	02/08/2002	3.50	-	Monitoring

Table 2-4 Summary of Registered Water Bores within 1 km of the site

Notes:

Data not recorded;

* SWL - Standing water level measured in mBGL,

Salinity - units unspecified,

Yield – measured in L/s.

All of the boreholes identified in close proximity were identified to be used for monitoring purposes. Most of the water bore did not contain information on drilled depth, standing water level, salinity and yield. The drilled bore depths ranged between 6.00 m and 6.50 mBGL. Standing water levels from bores ranged from 2.60 and 3.52 mBGL.

In view of the above information, and the fact that a reticulated water supply is available in the area, it is unlikely that groundwater extraction for beneficial domestic use is taking place in the locality.

2.5 SITE WALKOVER INSPECTION

El staff made a number of observations during a detailed site inspection on 31 July 2018. The recorded observations are summarised below:

• The site was used for various commercial purposes, including an engineering workshop, office buildings, and a film school (**Photos 1**);

- A workshop, located in the central portion of the site, was utilised for the manufacturing of engineering materials (**Photo 2**);
- Soil landscaping/vegetation were present on site. Soil in the southern portion of the site were observed to be overall healthy and showed no signed of distressed. However, soil located in the eastern portion of the site appears to be unhealthy, due to vehicle parking on top of vegetation (**Photos 2 and 3**);
- Concrete floor slabs & pavements on site were in poor to moderate condition with cracks, staining noted and discrepancies (**Photo 4**);
- Evidence indicative of underground petroleum storage systems (UPSS) or above ground storage tanks (AST) was not observed in accessible site areas during the inspection; and
- Previous installed groundwater monitoring wells were located during the inspection. These wells relate to previous investigation by SGA (2012) (**Photo 5**).

Photographs from the site walkover inspection are included in Appendix C.

3. PREVIOUS INVESTIGATIONS

3.1 AVAILABLE DOCUMENTS

The following investigations have been previously conducted for the site:

• SGA (2012) Environmental Site Investigation. Ref. 93099, dated September 2012.

A summary works and key findings is outlined in Table 3-1.

Table 3-1	Summary of Previous	Investigation	Works and Findings
	· · · · · · · · · · · · · · · · · · ·		<u> </u>

Assessment Details	Project Tasks and Findings	
Environmental Site Inve	stigation (SGA, 2012)	
Scope of Works	 Review of a previous SESL Preliminary Site Investigation report. Drilling of six boreholes on a grid pattern, and collected of soil samples. Installation and sampling of two groundwater monitoring wells. Laboratory analysis of samples for asbestos, heavy metals, petroleum hydrocarbons, mono aromatic hydrocarbons (including benzene, toluene, ethyl benzene and xylene), and polycyclic aromatic hydrocarbons (PAHs). Provision of a report detailing the findings of the field investigation and the laboratory results. 	
Investigation Findings and Conclusions	 Historical records indicated that site was former used as a foundry. Review of the report has observed some site history information to be missing from the investigation report. Additional site history information has been provided in Section 4. Concentrations of copper, lead, C₁₀-C₃₆ petroleum hydrocarbons, polycyclic aromatic hydrocarbons (including benzo(a)pyrene) were identified within fill material across the site exceeding NEPC (1999) commercial/industrial guidelines. SGA concluded that chemicals of concern would not preclude continued commercial use if foreseeable exposure is appropriately managed (i.e. via a site management plan). SGA noted that the contaminants were unlikely to be mobile as negligible concentrations of the elevated contaminants were identified in natural soils and groundwater. 	

4. ADDITIONAL SITE HISTORICAL INFORMATION

4.1 LAND TITLES INFORMATION / HISTORIC AERIAL REVIEW

A historical land titles search was conducted through Legal Liaison Searching Services Pty Ltd. Copies of relevant documents resulting from this search are presented in **Appendix D**. A summary of all the previous and current registered proprietors (**Table 4-1**), along with information obtained from the available historical aerial photographs, in relation to past potential land uses (**Table 4-2**). The historical aerial photographs reviewed as part of this ESA included:

- 1930: February 1930, Run 16, Map 3428 B/W
- 1943: Sydney 1943 Imagery (source : http://maps.six.nsw.gov.au/)
- 1951: May 1951, Run 15, Map 467 28 B/W Lands Photo
- 1961: Run 37E Map 1042 B/W, Cumberland 1961 series NSW 5156 Lands Photo
- 1986: 02 August 1986, Run 24E, Map 115 NSW 3527 Land and Property Information
- 1994: 4 October 1994, Run 11, Map 153-164 Land Information Centre
- 2004: 08 October 2004, Run 7, Map 14-25, NSW 4877 Department of Land

Table 4-1 Summary of Owner History

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)
As regards Lot 1 D.P. 84655	
08.08.1912 (1912 to 1940)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited
18.03.1940 (1940 to 1968)	Gordon Marr & Sons Pty. Limited
01.11.1968 (1968 to 1986)	P. Rowe Pty Limited
27.05.1986 (1986 to 1986)	Leda Holdings Pty Limited
03.11.1986 (1986 to 1991)	Baese Pty. Limited
29.01.1991 (1991 to 1998)	Tridu Pty. Limited
20.05.1998 (1998 to 2013)	Coates Signco Manufacturing Pty Limited Now Alan Coates Pty Limited

Date of Acquisition and term held Registered Proprietor(s) & Occupations (where documented) 04.01.2013 # International Screen Academy Property Pty Ltd (2013 to Date) # International Screen Academy Property Pty Ltd

Easements: -

• 28.07.1986 (D.P. 638902) - Easement for Support

Leases: -

- 01.11.1968 (L301856) Gordon Marr & Sons Proprietary Limited expired 17.05.1979
- Numerous leases were found from 29.01.1991 to 30.11.2010 that have since expired due to effluxion of time, or have been surrendered these have not been investigated
- 16.05.2013 (AH734086) International Screen Academy Property Pty Limited of 242 Young Street, Waterloo expires 17.12.2015
 - 26.07.2016 (AK625515) expiry date now 31.12.2017

As regards Lot A D.P. 161650

08.08.1912 (1912 to 1956)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited
10.05.1956 (1956 to 1968)	Gordon Marr & Sons Pty. Limited
01.11.1968 (1968 to 1982)	P. Rowe Pty Limited
16.03.1982 (1982 to 1989)	Perpetual Trustee Company Limited
16.03.1989 (1989 to 1995)	John Malcolm Sandilands Beverley Ann Sandilands
02.03.1995 (1995 to 1998)	Beverley Ann Sandilands
23.04.1998 (1998 to Date)	# Charvic Pty Limited

Easements: -

- 28.07.1986 (D.P. 638902) Easement for Support
- 28.07.1986 (D.P. 638902) Easement for Maintenance of Gutter

Leases: -

- 01.11.1968 (L301856) Gordon Marr & Sons Proprietary Limited expired 17.05.1979
- 01.07.1982 (T72760) P. Rowe Pty Limited expired 15.09.1988
- 15.09.1988 (X837002) P. Rowe Fabrics Pty. Limited surrendered 06.05.1994
- 06.05.1994 (U241772) expired due to effluxion of time, or has been surrendered this has not been investigated
- 20.12.2007 (AD653553) expired due to effluxion of time, or has been surrendered this has not been investigated
- 19.05.2017 (AM405465) Paramount Property Group Pty Limited of Factory, 244 Young Street, Waterloo together with 38 on-site parking spaces numbered 1–38. expires 01.04.2002 option of renewal 2 years

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)
As regards Lot B D.P. 161650	
08.08.1912 (1912 to 1966)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited
28.01.1966 (1966 to 1982)	P. Rowe Pty Limited
16.03.1982 (1982 to 1989)	Perpetual Trustee Company Limited
16.03.1989 (1989 to 1995)	John Malcolm Sandilands Beverley Ann Sandilands
02.03.1995 (1995 to 1998)	Beverley Ann Sandilands
23.04.1998 (1998 to Date)	# Charvic Pty Limited
Easements: -	

- 01.04.2009 (D.P. 1136961) Easement for Electricity and Other Purposes 3.365 metre(s) wide
- 01.04.2009 (D.P. 1136961) Right of Carriageway 6.8 metre(s) wide

Leases: -

- 01.07.1982 (T72760) P. Rowe Pty Limited expired 15.09.1988
- 15.09.1988 (X837002) P. Rowe Fabrics Pty. Limited surrendered 06.05.1994
- 06.05.1994 (U241772) expired due to effluxion of time, or has been surrendered this has not been investigated
- 20.12.2007 (AD653553) expired due to effluxion of time, or has been surrendered this has not been investigated
- 19.05.2017 (AM405465) Paramount Property Group Pty Limited of Factory, 244 Young Street, Waterloo together with 38 on-site parking spaces numbered 1–38. expires 01.04.2002 option of renewal 2 years

Notes: [#] Denotes Current Registered Proprietor

Table 4-2 Summary of Aerial Photograph History

	Site description based on historical aerial photographs	Land use
1930 20 February 1930	Due to the resolution of the 1930 photo, individual buildings cannot be distinguished. The site appeared to be utilised as a commercial buildings across the majority of the site. There were buildings located in the southern portion and the northern portion of the site.	Commercial
1943 Six Maps https://maps.six.nsw.gov.au	The site appears unchanged from the previous aerial photograph, with the exception of buildings along the northern portion of the site being redeveloped and a single building being constructed along the northern portion of the site.	
1951 May 1951	The site appeared unchanged from the previous aerial photograph.	

	Site description based on historical aerial photographs	Land use
1961	The site appeared unchanged from the previous aerial photograph.	
1986 2 August 1986	The site appeared unchanged from the previous aerial photograph, with the exception of vacant land in the central portion of the site, being developed with buildings and inferred to be used for commercial purposes.	_
1994 4 October 1994	The site appeared unchanged from the previous aerial photograph.	_
2004 8 October 2004	The site appeared unchanged from the previous aerial photograph.	_
2016 Six Maps https://maps.six.nsw.gov.au	The site appeared unchanged from the previous aerial photograph.	

In summary, review of land titles records and historic aerial photography showed that a commercial development occupied the northern and southern portion of the site since the 1930s. There have been slight alterations to the building since that time but the site has always remained of the same nature till the current date.

4.2 SURROUNDING LAND USE

As part of the review, an assessment of surrounding land uses using historical aerial photographs sourced from NSW Land and Property Information was carried out. A summary of the pertinent information identified at surrounding land parcels from the reviewed photographs is presented in **Table 4-3**.

Table 4-3	Summary of Aerial Photograph Re	view
-----------	---------------------------------	------

Aerial Photograph	Surrounding land uses based on historical aerial photographs
1930 20 February 1930	Site surroundings were predominantly commercial/industrial in nature. There were some residential buildings located further north-west and south east of the site.
1943 Six Maps https://maps.six.nsw.gov.au	Surrounding land use remained primarily unchanged from the previous aerial photograph.
1951 May 1951	Surrounding land use remained primarily unchanged from the previous aerial photograph.
1961	Surrounding land use remained primarily unchanged from the previous aerial photograph.
1986 2 August 1986	Surrounding land use remained primarily unchanged from the previous aerial photograph, except for the redevelopment of residential land to commercial use to the south-east of the site.
1994 4 October 1994	Surrounding land use remained primarily unchanged from the previous aerial, with the exception of the commercial buildings, adjacently north being redeveloped for high density residential purposes.
2004 8 October 2004	Surrounding commercial properties to the south and west have been redeveloped and predominantly used for high density residential purposes.

Aerial Photograph	Surrounding land uses based on historical aerial photographs
2016 Six Maps https://maps.six.nsw.gov.au	Surrounding land use remained primarily unchanged from the previous aerial photograph.

4.3 COUNCIL INFORMATION

An application to access records held by City of Sydney Council was initiated relating to the site was requested by EI, on behalf of the Client. Correspondence has not been during the time of writing of this report. Should pertinent information be identified from council, an addendum to the PSI will be prepared and issued.

However, a check of the Sydney of City Planning street cards identified some development and alterations that occurred on the site. A summary of the Development Applications can be seen in **Table 4-4**.

Reference	Date	DA Application Information
45-1	7-10-32	Refurbish existing building.
41-3-1273	10-09-36	Site usage for sign storage and fabrication of sign prototypes.
2181-55	2-12-55	Reconstruct roof.
148-1-62	27-2-62	Use of premises for the cleaning of drum reconditioners.
435-62	27-2-62	Replace roof.
290-63	15-2-63	Alterations to building.
1014-63	8-5-63	Fire escape stairs.
1228-63	7-6-63	Extension of roof.
1336-63	20-6-63	Septic tank.
2828-63	9-12-63	Alterations
2128-64	4-10-64	Reinstatement after fire.
155-1-65	8-3-65	Construction of vehicles crossing.
212-65	10-3-65	Use of preemies for soap manufacturing.
982-65	1-12-65	Erection of warehouse building offices, alterations and amenities.
544-66	15-3-66	New building warehouse.
87-73	5-3-73	Erection of warehouse building/offices/showroom and amenities.
45-84-5147	28-3-84	Upgrading fire egress & protection
45-86-2103	-	Refurbish building and mezzanine.
45-88-0224	-	Erection of pylon sign and flush wall.

 Table 4-4
 Summary of Online Council Records

Reference	Date	DA Application Information	
210-62	-	Installation of equipment for the cleaning of tallow drum.	

4.4 SAFEWORK NSW DATABASE SEARCH

A search of SafeWork NSW dangerous goods records was completed as part of this assessment. Correspondence from SafeWork NSW revealed that the following records pertaining to the premises were held, with details as described in **Table 4-5** (correspondence attached in **Appendix K**).

Licence Holder / Premises	Type of Infrastructure	Goods Stored	Quantity	Location of storage	Status
P. Rowe Fabrics Pty Ltd/ corner of Powell & Young Street, Waterloo NSW 2017 Dated: 24-10-1988	Underground Tank	Petrol	10,000 L	North eastern portion of the site (See Figure 3)	Unknown
P. Rowe Fabrics Pty Ltd/ corner of Powell & Young Street, Waterloo NSW 2017 Dated: 09-06-1975	Underground Tank	Mineral Spirit	10,000 L	-	Unknown
	Brick-Concrete Storage Facility (<i>unknown if</i> above or below ground storage)	Mineral Oil	10,000 L	-	Unknown
		Class 3 Material (Nitro-Cellouse)	2 x 2,500 kg	-	Unknown

Table 4-5 Summary of SafeWork Records

Land title searches revealed the property located at the site to have been previously owned by P. Rowe Pty Ltd, with SafeWork records confirming the historical presence of UST's at this property. There is no information pertaining if the tanks have been removed from the site. There are some uncertainties of where some of the previous locations of the tanks mentioned are located.

4.5 EPA ONLINE RECORDS

On 6 September 2018, an on-line search of the contaminated land public record of NSW Environment Protection Authority (EPA) Notices was conducted. The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the Contaminated Land Management Act 1997 (CLM Act);
- Approved voluntary management proposals under the CLM Act that have not been fully carried out and where the approval of the EPA has not been revoked;
- Site Audit Statements provided to the EPA under Section 53B of the CLM Act that relate to significantly contaminated land;
- Where practicable, copies of any documentation formerly required to be part of the public record; and
- Actions taken by the EPA under Sections 35 and 36 of the *Environmentally Hazardous Chemicals Act 1985*.

This search confirmed that the NSW OEH had no regulatory involvement in relation to the area of investigation. Properties in proximity to the site which the NSW OEH have been involved with area listed in **Table 4-5**.

Name & Address of Property	Distance & Direction from Site	CLR Entries	Associated Contaminants
887-893 Bourke Street, Waterloo	400 m SE	2005 – Declaration of remediation site 2016 – Notice to end significantly contaminated land declaration	Groundwater – PCE, TCE, DCE, and vinyl chloride

Table 4-6	Properties listed on the contaminated land record
-----------	---

A search through the List of NSW Contaminated Sites notified to the EPA under Section 60 of the CLM Act 1997 was also conducted on 6 September 2018. This list is maintained by NSW EPA and includes properties on which contamination has been identified. Not all notified land is deemed to be impacted significantly enough to warrant regulation by the EPA. The subject site has not been notified as contaminated to the EPA. Properties in proximity to the site which have been notified to the EPA are listed in **Table 4-6**.

Table 4-7	Land notified to	NSW EPA

Suburb	Description and Address	Activity that caused contamination	Distance and direction from site	EPA site management class
Waterloo	Diversity Waterloo 1-13 Archibald Avenue	Other Industry	210 m E	Under Assessment
Waterloo	Iconic (Former Chubb Factory) Waterloo 830-838 Elizabeth Street	Other Industry	180 m SW	Regulation under CLM Act not required
Waterloo	Lawrence Dry Cleaners 887-893 Bourke Street	Unclassified	400 m SE	Contamination currently regulated under CLM Act

A search of the Protection of the Environment Operations (POEO) Act public register, regarding environmental protection licences, applications, notices, audits, pollution studies, and reduction programmes, did not identify any record for the site. Records were identified for sites in proximity of the application site, and these are shown in **Table 4-7**.

Table 4-8 POEO public register entries

Suburb	Description and Address	Distance and direction from site	Activity type	POEO Records
Waterloo	Heidelberg Graphic Equipment Limited 50 O'Dea Avenue	460m SE	Hazardous, Industrial or Group A Waste Generation or Storage	POEO Licence, Licence variations
Waterloo	Lawrence Dry Cleaners	400m SE	Hazardous, Industrial or Group A Waste Generation or Storage	POEO Licence, Licence variations

5. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, EI developed a preliminary conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways, and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

5.1 CHEMICAL HAZARDS AND CONTAMINATION SOURCES

On the basis of site history and search findings described by DLA (2014) (**Section 3**), EI consider potential chemical hazards and onsite contamination sources to be as follows:

- Imported fill soils of unknown origin distributed across the site;
- Impacts from previous commercial industrial activities at the site;
- Painted surfaces in relation to the structures (buildings) that are currently present on the site;
- Hazardous materials, including potential asbestos-containing materials (ACM) from building products;
- Historical application of pesticides;
- Deeper, natural soils containing residual impacts, representing potential secondary sources of contamination; and
- Migrating contaminants from offsite sources.

5.2 PER OR POLY-FLUOROALKYL SUBSTANCES (PFAS)

The NSW EPA (2017) Auditor Guidelines require that PFAS substances are considered in assessing contamination. El use the following Decision Tree (**Table 5-1** below) based on EnRisk (2016) for prioritising the potential for PFAS compounds being present on Site and whether PFAS sampling of soil and water is required.

Preliminary Screening	Probability
Did fire training occur onsite?	Low
Did fire training occur, or is an airport or fire station up-gradient of or adjacent to the Site? ¹	Low
Have "fuel" fires ever occurred onsite? e.g. ignition of fuel (solvent, petrol, diesel, kero) tanks?	Low Insufficient site history information available
Have PFAS been used in manufacturing or stored on-Site ? ²	Medium Previous operations included fabric industry use, which are known to use products that may contain PFAS. A large store of nitrocellulose lacquer was noted in Safework records, which could be a possible point source of contamination.

Table 5-1 PFAS Decision Tree

Preliminary Screening

If Yes to any questions, has site analytical suite been optimised to include preliminary sampling and testing for PFAS in soil (ASLP Testing) and water?

Probability

See Section 10 for commentary

Note 1 Runoff from fire training areas may impact surface water, sediment and groundwater.

Note 2 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of non-stick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam (<u>https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas</u>)

Although the PFAS decision tree does not identify the need to include PFAS within the testing suite, aerial photography analysis (DLA, 2014) indicates that part of the site may have burnt down. As such, it is considered likely that fire fighting foams were applied to the site and, as such, PFAS are included within the COPC (**Section 4.4**).

5.3 EMERGING CHEMICALS

The NSW EPA uses Chemical Control Orders (CCOs) as a primary legislative tool under the EHC Act (1985) to selectively and specifically control particular chemicals of concern, and limit their potential impact on the environment. CCOs provide the EPA a rapid and flexible mechanism for responding to emerging chemical issues. As with PFAS compounds, EI has considered chemicals controlled by CCOs and other potential emerging chemicals in this assessment as outlined in **Table 5-2** below.

Table 5-2 Emerging or Controlled Chemicals

Chemicals of Concern (CCO or emerging)	Decision
Were aluminium smelter wastes used or stored on Site (CCO, 1986)?	No
Do dioxin contaminated wastes (CCO, 1986) have the potential to impact the Site? $^{\rm 1}$	No
Were organotin products (CCO, 1989) used or stored on Site? ²	No
Were polychlorinated biphenyls (PCBs) used or PCB wastes (CCO, 1997) stored on-Site? $^{\rm 3}$	Yes If PCB containing pesticides were used onsite
Were scheduled chemical or wastes (CCO, 2004) used or stored ⁴	Yes If OC pesticides were used onsite
Are other emerging chemicals suspected? ⁵	No
If Yes to any questions, has the site sampling suite been optimised to include specific sampling for other chemicals of concern in soil, air, and water	Yes

Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the Site.

Note 2 From anti-fouling paints used or removed at boat & ship yards and marinas.

Note 3 From older transformer oils & electrical capacitors

Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products

Note 5 Other chemicals considered as emerging e.g. 1,4 dioxane (associated with some cVOCs).

5.4 CONTAMINANTS OF POTENTIAL CONCERN

Based on the findings of the site contamination appraisal the contaminants of potential concern (COPC) at the site are considered to be:

 Soil – heavy metals (HMs), petroleum hydrocarbons (TRHs, BTEX compounds), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOC), including chlorinated VOC (VOCC), organochlorine and organophosphate pesticides (OCP/OPP), polychlorinated biphenyls (PCB), Per- and Polyfluoroalkyl Substances (PFAS),and asbestos.

 Groundwater – HMs, TRH, BTEX, PAH, VOCs and VOCCs (such as trichloroethene (TCE)), and PFAS.

5.5 POTENTIAL SOURCES, EXPOSURE PATHWAYS, AND RECEPTORS

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in **Table 5-3**.

Table 5-3 Conceptual Site Model

Potential Sources	Potential Contaminants	Sensitive Receptor	Migration & Exposure Pathways
Imported Fill	HM, TRH, PAH, BTEX,	Site Workers during demolition and construction	Dermal Contact
	OCP/OPP, PCB, Asbestos	Future site residents	Ingestion
		Adjacent land users	Inhalation
		Groundwater	Seepage into the subsurface soils, bedrock, and groundwater.
Historical and present site uses	HM, TRH, PAH, BTEX,	Site Workers during demolition and remediation.	Dermal Contact
(Including a chemical manufacturer,	VOC, Asbestos	Future site residents	Ingestion
plastic manufacturer, metal recycler)		Adjacent site users	Inhalation
		Groundwater	Seepage into the subsurface soils, bedrock, and groundwater.
Painted surfaces on existing	HM (Lead)	Site Workers during demolition and construction	Dermal Contact
structures		Future site residents	Ingestion
		Adjacent site users	Inhalation
		Groundwater	Seepage into the subsurface soils, bedrock, and groundwater.
Deleterious materials within the	Asbestos	Site Workers during demolition and construction	Dermal Contact
existing structures		Future site residents	Ingestion
		Adjacent site users	Inhalation
Historical use of firefighting foams	PFAS	Site Workers during demolition and construction	Dermal Contact
		Future site residents	Ingestion
		Adjacent site users	Inhalation
		Groundwater	Seepage into the subsurface soils, bedrock, and groundwater.
Offsite contamination sources	HM, TPH, PAH, BTEX, VOC	Site Workers during demolition and construction	Dermal Contact
		Future site residents	Ingestion
		Adjacent site users	Inhalation

5.6 DATA GAPS

Based on information from the site walkover inspection and site history review, EI considered a programme of intrusive investigation was warranted to conduct targeted sampling at locations of known, potential sources of contamination (as listed in **Section 5.1**), with systematic sampling coverage across the site area.

6. SAMPLING, ANALYTICAL, AND QUALITY PLAN (SAQP)

The SAQP plays a crucial role in ensuring that the data collected as part of this, and ongoing environmental works carried out at the site are representative, and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the ESA;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

6.1 DATA QUALITY OBJECTIVES (DQO)

In accordance with the US EPA (2006) *Data Quality Assessment* and the EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 6-1**.

Table 6-1 Summary of Project Data Quality Objectives

DQO Steps	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination problem that will require new	• The site proposed demolition of existing structures and redevelopment into a mixed use development including a residential apartment building, townhouses and commercial/retail overlying a single level basement (Section 1.2).	-
environmental data, and identify the resources available to resolve the problem; develop a conceptual site model	• Historical information and site inspection identified the potential for contamination to be present in site soil and/or groundwater, contributed by various potential sources, predominantly industrial use, listed in Section 5.1 . Based on the site history information collected, a preliminary conceptual site model of the site has been developed, and is present in Section 5.4 .	
	• The investigation sampling must provide supportive information on the environmental conditions of the site to determine the site's suitability for the proposed development.	
2. Identify the Goal of the Study	Based on the objectives outlined in Section 1.4, the decisions that need to be made are	-
(Identify the decisions) Identify the decisions that need to be	 Has the nature, extent and source of any soil, vapour and/or groundwater impacts onsite been defined? 	
made on the contamination problem and the new environmental data	• What impact do the site specific, geological, and hydrogeological conditions have on the fate and transport of any impacts that may be identified?	
	 Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? 	
	 Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, if necessary? 	

basis for choosing from alternative

actions

DQO Steps	Details	Comments (changes during investigation)
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	 Inputs to the decision making process include: Proposed development plans and land use; Regional and site settings including site geology, topography and surrounding land uses; Previous investigation completed at the site by SGA Environmental (2012); Areas of concern identified by SGA Environmental (2012) and during the site inspection prior to intrusive investigations; National and NSW EPA guidelines under the NSW <i>Contaminated Land Management Act 1997</i>; Intrusive investigation sampling to characterise environmental conditions at the site and to evaluate the potential risks to sensitive receptors; and Laboratory analytical results of soil and groundwater samples collected. At the end of the assessment, a decision must be made regarding whether the soils and groundwater are suitable for the proposed development, or if additional investigation or remedial works are required to make the site suitable. 	-
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	 Lateral – the investigation will be conducted within the site boundaries; which defines the extent of the investigation; Vertical – From existing ground surface, underlying fill and natural soil and rock horizons, to a maximum depth of 5.50 mBGL; and Temporal – Results are valid on the day of data and sample collection and remain valid as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources. 	Lateral – the extent of the study onsite was limited to accessible areas of the site due to existing building structures, infrastructure, and provision of access, as detailed in Section 7.2 . Vertical – BH3 to BH6 terminated within fill due to auger refusal.
 5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical 	 The decision rules for the investigation were: If the concentrations of contaminants in the soil exceed the adopted land use criteria; then assess the need to further investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 6-2. 	-

DQO Steps	Details	Comments (changes during investigation)
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors)	Specific limits for this project are to be in accordance with the National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This should include the following points to quantify tolerable limits:	An additional sampling point was added to the investigation to allow a more complete coverage of the site area.
Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data	 The null hypothesis for the investigation is that: The 95% Upper Confidence Limits (UCL) of the mean for contaminants of concern exceeding the adopted criteria across the site. A minimum of 10 sampling points on a site of area 4,500 m² will allow detection of a circular hotspot with a nominal diameter of 19.9 m with 95% certainty; The acceptance of the site will be based on the probability that The 95% UCL of the mean of the data will satisfy the given site criteria. Therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect; and The standard deviation of the results is less than 50% of the relevant remediation acceptance criterion; and No single result exceeds the remediation acceptance criteria by 250% or more; Soil concentrations for chemicals of concern that are below investigation criteria made or approved by the NSW EPA will be treated as acceptable and indicative of suitability for the proposed land use(s); If contaminant concentrations in groundwater exceed the adopted criteria, further investigation will be considered prudent. If no contamination is detected in groundwater, further action will not be warranted. 	In light of access restrictions onsite, a systematic sampling pattern for assessment could not be adopted for every sampling position. A targeted sampling approach was utilised.
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs	 The site area (4,500 m²) required eleven sampling points according to EPA (1995). Soil sampling locations were set using a systematic sampling pattern across the accessible areas of the site. An upper soil profile sample (soil extracted immediately beneath the concrete hardstand / pavement / ground level) will be collected at each borehole location and tested for chemicals of concern, to assess the conditions of any fill layer, and impacts from activities above ground. Further sampling would also be carried out at deeper soil layers. These samples would be selected for testing based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples) whilst giving consideration to characterise the subsurface soil stratigraphy. Three groundwater monitoring wells were proposed to characterise groundwater quality within the site. Written instructions will be issued to guide field personnel in the required fieldwork activities. 	An additional sampling point was added to the investigation to allow a more complete coverage of the site area. In light of access restrictions onsite, a systematic sampling pattern for assessment could not be adopted for every sampling position. A targeted sampling approach was utilised.

6.2 DATA QUALITY INDICATORS

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 6-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 7**.

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared) Laboratory – Laboratory control spike and matrix spike	< laboratory limit of reporting (LOR)
		Prescribed by the laboratories
Precision	Field – Blind replicate and spilt duplicate Laboratory – Laboratory duplicate and matrix spike duplicate	< 30 % relative percentage difference (RPD [%])
		Prescribed by the laboratories
Representativeness	Field – Trip blank (laboratory prepared) Laboratory – Method blank	< laboratory limit of reporting (LOR)
		Prescribed by the laboratories
Completeness	Completion (%)	-

Table 6-2 Data Quality Indicators

7. ASSESSMENT METHODOLOGY

7.1 SAMPLING RATIONALE

With reference to the preliminary CSM described in **Section 5**, soil and groundwater investigation works were planned in accordance with the following rationale:

- Sampling fill and natural soils from ten (10) test bore locations located systematically across the site using a grid-based sampling pattern to characterise in-situ soils;
- Sampling groundwater during a single groundwater monitoring event (GME) at three (3) monitoring wells located across the site to assess for potential groundwater impacts; and
- Laboratory analysis of representative soil and groundwater samples for the identified chemicals of concern.

7.2 INVESTIGATION CONSTRAINTS

The number of test bores drilled and monitoring wells installed during the investigation phase did not achieve the planned investigation scope described in **Section 7.1** due to a number of physical obstructions, which comprised:

- Previous groundwater wells identified in the previous SGA (2012) report, were unable to be resampled due to being concrete capped after the previous consultants finalised their report;
- An additional groundwater well was added to the scope of works, to determine an appropriate understanding of groundwater conditions of the site;
- Limited head-clearance for the mechanical drilling rig; and
- Buried impenetrable materials (buried deep slabs and rock boulders), which resulted in hand auger refusal.

Due to access and head clearance restrictions (limited ceiling height) within the existing buildings, proposed sampling locations BH2 to BH6 were completed using a hand auger.

Locations BH2 to BH6 were terminated within fill materials at a depths ranging between 0.30 -0.5 mBGL due to buried obstructions.

7.3 ASSESSMENT CRITERIA

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 9**.

7.3.1 Soil

The assessment criteria proposed for this project are outlined in **Error! Not a valid bookmark selfreference.**. These were selected from available published guidelines that are endorsed by national or

state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Environmental Media	Adopted Guidelines	Rationale			
Soil	NEPM, 2013	Soil Health-based Investigation Levels (HILs)			
	Soil HILs, EILs, HSLs, ESLs &	Samples from the north-western site area are to be assessed against the NEPM 2013 HIL-A (residential sites with accessible soils).			
	Management Limits for TPHs	The remainder of the site will be assessed against HIL-B thresholds for residential sites with minimal access to soils.			
		Ecological Investigation Levels (EILs)			
		BH4, BH7 & BH9 soil samples would also be assessed against the NEPM 2013 EILs for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene, which have been derived for protection of terrestrial ecosystems.			
		Soil Health-based Screening Levels (HSLs)			
		The NEPM 2013 Soil HSL-D thresholds for commercial/industrial sites for vapour intrusion would be applied to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX, & naphthalene. Commercial/Industrial values have been adopted as Section 2.4.8 of Schedule B(1) of NEPM (2013) indicates that HSLs are applicable to ground floor uses.			
		WADOH (2009) assessment criteria, as presented in NEPM (2013), were not adopted during this investigation. Presence / absence of asbestos (not-detected) were utilised for preliminary screening purposes.			
		Management Limits for Petroleum Hydrocarbons			
		Should the HSLs be exceeded for petroleum hydrocarbons, soil samples would also assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.			

Table 7-1 Adopted Investigation Levels for Soil

7.3.2 Groundwater

In accordance with DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, groundwater acceptance criteria are based on environmental values considered relevant for groundwater use at the site and surrounding uses of groundwater and surface waters that may be effected by the site. Potential environmental values include:

- Aquatic ecosystems: surface water and groundwater ecosystems;
- Human Uses: these include but are not limited to potable water supply, agricultural water supply (irrigation and stock watering), industrial water use, aquaculture and human consumption of aquatic foods, recreational use (primary and secondary contact with surface waters), and visual amenity of surface waters;
- Human health in non-use scenarios: this includes consideration of health risks that may arise without direct contact between humans and the groundwater, for example, exposure to volatile contaminants above groundwater contaminant plumes; and

• Buildings and structures: this includes protection from groundwater contaminants that can degrade building materials through contact, for example, the weakening of building footings resulting from chemically aggressive groundwater.

Cultural and spiritual values that are associated with the environment, including groundwater, should also be protected. Cultural and spiritual values may include spiritual relationships, sacred sites, customary uses, the plants and animals associated with the water, drinking water supplies, and recreational activities. In managing groundwater contamination, it is generally considered that cultural and spiritual values will be protected where groundwater quality protects all other relevant environmental values on a site.

El completed a search of registered groundwater bores within a 500 m radius of the site on the WaterNSW website (**Section 2.4**). 84 groundwater wells were registered within a 500 m radius, however these were all for monitoring purposes.

An assessment of the applicability of groundwater environmental values for the site and off-site is provided in **Table 7-2** below.

Environmental Value		Relevance	
Aquatic Ecosystems - Surface water ecosystems and groundwater ecosystems		The nearest down-gradient surface water ecosystem is towards Sheas Creek located approximately 800 m south-west of the site. This environmental value applies to all natural waterways and should be assessed.	
Human Uses	Potable Water	Potable water for the site will be supplied by municipal reticulated supply. The use of groundwater for potable uses is not registered within 500 m radius of the site, nor within a down-gradient (south easterly) direction from the site. Potable water is not considered to be a relevant environmental value for the site.	
	Agricultural Water supply (Irrigation and livestock watering)	There is no planned use of groundwater for agricultural purposes (irrigation and stock watering) at the site and the site is situated in an urbanised setting. The use of groundwater for agricultural uses is not registered within 500 m radius of the site nor within a down-gradient (south easterly) direction from the site. Agricultural water supply is not considered to be a relevant environmental value for the site.	
	Industrial Water use	There is no planned use of groundwater for industrial purposes at the site. Groundwater off-site for industrial purposes may be used however its use would be assessed for specific industrial use. The use of groundwater for industrial uses is not registered within 500 m radius of the site, nor within a down-gradient (south easterly) direction from the site. Industrial water supply is not considered to be a relevant environmental value for the site.	
	Aquaculture / human consumption of Aquatic foods	There is no planned use of groundwater for aquaculture/human consumption of aquatic foods at the site. EI checked the NSW Department of Primary Industries Aquaculture Industry Directory 2016 for listings of aquaculture businesses in Waterloo and in neighbouring areas. The directory is not inclusive of all producers in NSW but does list businesses nominating to be listed. No businesses were listed for Waterloo or Surrounding Areas. The use of groundwater for aquaculture uses is not registered within 500 m radius of the site, nor within a down-gradient (south easterly) direction from the site. Aquaculture water supply is not considered to be a relevant environmental value for the site.	

Environmental Value

Environmental Value		Relevance	
	Recreational use (primary and secondary contact)	There is no planned use of groundwater for recreational use at the site. The use of groundwater for recreational uses in swimming pools (i.e. pumping groundwater) is not registered within 500 m radius of the site. The use of groundwater for primary contact recreational uses is considered unlikely; however secondary contact may occur within the Sheas Creek.	
		Recreational use is considered to be a relevant environmental value for the site.	
	Visual amenity to surface waters	Given the distance of Sheas Creek from the site, this environmental value is not considered relevant to the site.	
Human health in non-use scenarios		The potential for vapour exposure from groundwater, without direct contact with groundwater, may occur if groundwater is contaminated with volatile contaminants. This Environmental Value should be assessed.	
Buildings and structures		Foundations may be in contact with groundwater. This environmental value should be assessed.	

Based on the above assessment, the environmental values (REVs) to be further assessed are: Aquatic Ecosystems, Recreational Use, and Buildings and Structures.

For the relevant environmental values, the adopted GILs are summarised in Table 7-3 below.

Table 7-3	Adopted	Investigation	Levels for	r Groundwater
-----------	---------	---------------	------------	---------------

Adopted Guidelines		Rationale		
Groundwater	NEPM, 2013 GILs for Fresh Waters	Groundwater Investigation Levels (GILs) for Fresh Water NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZG (2018) Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals <i>cadmium</i> and <i>mercury</i> . The fresh water criteria were considered relevant as the closest, potential surface water receptor was Alexandra Canal, located 920 m south-east of the site.		
		Due to the ANZECC (2000) criteria for petroleum hydrocarbons being below the laboratory limit of reporting, the PQL for each TRH fraction was adopted as the GIL for aquatic ecosystems, as per the guidance provided in DEC (2007) <i>Guidelines for the Assessment and</i> <i>Management of Groundwater Contamination.</i>		
	NEPM, 2013 GILs for Drinking purposes	Drinking Water GILs The NEPM (2013) GILs for drinking water quality were applied for the assessment of direct contact with groundwater. Drinking Water values are multiplied by a factor of 100 to address potential groundwater contact by basement users, and construction and maintenance workers. These values are based on the Australian Drinking Water Guidelines (Ref. NHMRC, 2011).		

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in Section 9.

7.4 SOIL INVESTIGATION

The soil investigation works conducted at the site are described in Table 7-4. Test bore locations are illustrated in Figure 2.

Activity/Item	Details
Fieldwork	The site investigation was conducted on 15 August 2018. Ten boreholes were completed, with three of these converted into monitoring wells (BH1M, BH9M, & BH10M).
Drilling Method & Investigation Depth	Boreholes BH1M, BH7, BH8, BH9M and BH10M were drilled using a ute-mounted solid flight auger drilling rig. Final bore depths were between 2.00 – 5.00 mBGL. Boreholes BH2 to BH6 were drilled using the hand auger method due to height/access restrictions within the buildings. Manual auger refusal was experienced at borehole BH3 to BH6 due to obstructions within fill soils.
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix E .
Field Observations (including visual and olfactory signs of potential contamination)	A summary of field observations is provided in borehole log descriptions (Appendix E) , and summarised in Section 9.1.2 .
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated latex gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars. Blind field duplicates was separated from the primary samples and placed into glass jars. A small amount of duplicate was collected from each soil samples and placed into ziplock bag for Photo-ionisation Detector (PID) screening. A small amount of duplicate was separated from all fill samples and placed into a ziplock bag for asbestos analysis.
Decontamination Procedures	<i>Drilling Equipment</i> - The drilling rods were decontaminated between sampling locations with potable water until the augers were free of all residual materials. <i>Sampling Equipment</i> – Tools (i.e. stainless steel hand trowel) were wiped clean using unused paper between near-surface sampling points, except where residue was observed after sampling, in which case they were washed with a potable water/phosphate-free detergent mixture, then rinsed with potable water and wiped with unused paper. Sampling gloves were replaced between sampling locations.
Sample Preservation	Samples were stored in a chilled (with ice-blocks) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 8 .
Soil Vapour Screening	Screening for potential VOCs in collected soil samples was conducted using a Photo- ionisation Detector (PID).

Table 7-4 Summary of Soil Investigation Methodology

7.5 **GROUNDWATER INVESTIGATION**

The groundwater investigation works conducted at the site are described in **Table 7-5**. Monitoring well locations are illustrated in **Figure 3**.

Activity/Item	Details
Fieldwork	Groundwater monitoring wells were installed and developed on 15 August 2018; whereas, water level gauging, well purging, field testing and groundwater sampling was conducted on 24 August 2018.
Well Construction	Test bores were converted to groundwater monitoring wells as follows:
	 BH1M, BH9M and BH10M – screen 2.00 – 5.00 mBGL
	Drilling was undertaken by HartGeo Pty Ltd using a ute-mounted solid flight auger drilling rig. Well construction details are tabulated in Table 9-2 and documented in the bore logs presented in Appendix E . All three wells were installed to screen the shale bedrock.
	Well construction was in general accordance with the standards described in NUDLC, 2012 and involved the following:
	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present;
	 Base and top of each well was sealed with a uPVC cap;
	 Annular, graded sand filter was used to approximately 300mm above top of screen interval;
	Granular bentonite was applied above annular filter to seal the screened interval;
	Drill cuttings were used to backfill the bore annulus to just below ground level; and
	 Surface completion comprised a steel road box cover set in neat cement and finished flush with the concrete slab level.
Well Development	Well development was conducted for each well directly following installation. This involved agitation within the full length of the water column using a stainless steel bailer, followed by removal of water and accumulated sediment. Water was removed from the wells until dry.
Well Survey (Elevation and location)	Well elevations at ground level were extrapolated from the spot elevations marked on the survey plan provided by the client (Figure 3). Well elevations at ground level were extrapolated in metres relative to Australian Height Datum (m AHD).
Well Gauging & Groundwater Flow Direction	Monitoring wells BH1M, BH2M, and BH3M were gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 14 May 2018. The measured SWLs are shown in Table 9-2 .
	Based on the reduced water levels (RWLs, i.e. SWLs corrected to AHD) calculated at each monitoring well (Table 9-3), the direction of groundwater flow was inferred to be southwest.
Well Purging & Field Testing	No volatile organic odours were detected during any stage of well purging. Measurement of water quality parameters was conducted repeatedly during well purging and were recorded onto field data sheets (Appendix F) once water quality parameters stabilised. In all wells groundwater was described as having moderate/low-moderate turbidity. Field measurements for Dissolved Oxygen (DO), Electrical Conductivity (EC) and pH of the purged water were also recorded during well purging. Purged water volumes removed from each well and field test results are summarised in Table 9-3 .

Table 7-5 Summary of Groundwater Investigation Methodology

Activity/Item	Details				
Groundwater sampling	Groundwater purging and sampling was conducted using a low-flow/minimal drawdown sampling method with a MicroPurge kit (MP15) and pump.				
	The MicroPurge system incorporates a low density poly-ethylene (LDPE) pump bladder, and a Teflon-lined LDPE sample delivery tube. The system used for this investigation employed pressurised carbon dioxide gas to regulate groundwater flow. Pump pressure and pumping cycles were adjusted accordingly to regulate extraction flow rate, and to avoid causing excessive drawdown of water level during the sampling process.				
	Groundwater quality was measured repeatedly during purging using a calibrated Hanna Multi Parameter 9829 water quality meter. Three consecutive field measurements recorded within \pm 3% for EC, \pm 20 mV for redox, \pm 20% for DO and \pm 0.2 for pH were considered indicative of representative groundwater. Following stabilisation of parameters, groundwater was sampled.				
Decontamination Procedure	The water level probe and water quality kit probes were washed in a solution of potable water and Decon 90 and then rinsed with potable water between measurements/wells.				
Sample	Sample containers were supplied by the laboratory with the following preservatives:				
Preservation	One, 1 litre amber glass, acid-washed and solvent-rinsed bottle;				
	Two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; and				
	 One, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL). 				
	Samples for metals analysis were field-filtered using 0.45 µm pore-size filters. All containers were filled with sample to the brim then capped and stored in ice-filled chests, until completion of the fieldwork and during sample transit to the laboratory.				
Quality Control & Laboratory Analysis	All groundwater samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes.				
Sample Transport	After sampling, refrigerated sample chests were transported to SGS Australia Pty Ltd using strict Chain-of-Custody (COC) procedures. Inter-laboratory duplicate (ILD) samples were forwarded to Envirolab Services Pty Ltd (Envirolab) for QA/QC analysis. A Sample Receipt Advice (SRA) was provided by each laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix G .				

8. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if these data meet the objectives of the project (Ref. USEPA 2006). Data quality assessment includes an evaluation of the compliance of the field sampling and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements obtained.

The data quality assessment process for this assessment included a review of analytical procedures to confirm compliance with established laboratory protocols and an assessment of the accuracy and precision of analytical data from a range of quality control measurements. The QC measures generated from the field sampling and analytical program were as follows:

- Suitable records of fieldwork observations including borehole logs;
- Relevant and appropriate sampling plan (density, type, and location);
- Use of approved and appropriate sampling methods;
- Preservation and storage of samples upon collection and during transport to the laboratory;
- Complete field and analytical laboratory sample COC procedures and documentation;
- Sample holding times within acceptable limits;
- Use of appropriate analytical procedures and NATA-accredited laboratories; and
- Required LOR (to allow for comparison with adopted IL);
- Frequency of conducting quality control measurements;
- Laboratory blanks;
- Field duplicates;
- Laboratory duplicates;
- Matrix spike/matrix spike duplicates (MS/MSDs);
- Surrogates (or System Monitoring Compounds);
- Analytical results for replicated samples, including field and laboratory duplicates and interlaboratory duplicates, expressed as Relative Percentage Difference (RPD); and
- Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The findings of the data quality assessment in relation to the soil and groundwater investigations at the site are discussed in detail in **Appendix I**. QA/QC policies and DQOs are presented in **Appendix J**.

On the basis of the analytical data validation procedure employed the overall quality of the soil and groundwater analytical data produced for the site were considered to be of an acceptable standard for interpretive use.

9. RESULTS

9.1 SOIL INVESTIGATION RESULTS

9.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of the soil investigation boreholes, installation of monitoring wells may be described as a layer of anthropogenic filling overlying Botany Sands, with Hawkesbury Sandstone at depth. The geological information obtained during the investigation is summarised in **Table 9-1** and borehole logs from these works are presented in **Appendix E**.

Layer	Description	Depth to top and bottom of strata (mBGL)
Fill	CONCRETE	0.00 – 0.15
	Gravelly Clayey SAND; fine to medium grained, light brown/orange/ grey, with low to medium plasticity clay and fine, sub-angular to angular gravels, with plastics and bark fragments.	0.12 - 0.80
	SAND: fine to medium grained, dark brown, with organics.	0.10 - 0.20
	Gravelly CLAY; low to medium grained, brown, with fine to coarse gravels.	0.15 – 1.50
	Gravelly SAND; fine to medium grained, brown, with fine to coarse, sub-angular to angular gravels,	0.00 - 0.70
Residual	SAND; fine grained, light grey, brown, dark brown.	0.60 - 5.00 +
301	Silty CLAY (PEAT); medium plasticity, dark brown.	1.50 – 2.00
	CLAY; medium to high plasticity, brown.	
Bedrock	SANDSTONE; fine grained, yellow, with coarse, sub-angular to angular sandstone fragments.	0.20 – 5.50+

Table 9-1 Generalised Subsurface Profile

Notes:

+ Termination depth of borehole

9.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.1 m to 3.5mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash and charcoal) and the following observations were noted:

- Visual or olfactory evidence of sulfate and hydrocarbon impacts were noted in boreholes BH1M, BH2, BH4 and BH6 during this assessment;
- No brick and tile fragments were noted in the fill layers at any of the borehole locations investigated during this assessment;
- No fibrous cement sheeting, ash or charcoal was observed in any of the examined fill soils. However, slag was noted in BH5; and

• Slightly elevated VOC concentrations ranging was detected in natural soil material in BH1M_3.4-3.5 (23.1ppm), which were field-screened using a portable PID fitted with a 10.9 eV lamp. The PID results are shown in the borehole logs (**Appendix E**) and the samples showing higher PID values were therefore assigned for laboratory VOC and SVOC analysis.

9.2 GROUNDWATER INVESTIGATION RESULTS

9.2.1 Monitoring Well Construction

A total of three groundwater monitoring wells were installed across the site (BH1M, BH9M, and BH10M). Well construction details for the installed groundwater monitoring wells are summarised in **Table 9-2**.

Well ID	Bore Depth (mBGL)	Screen Interval (mBGL)	Lithology Screened
BH1M	5.00	2.00-5.00	Sand
BH9M	5.00	2.00-5.00	Sand
BH10M	5.50	2.00-5.00	Sand

Table 9-2 Monitoring Well Construction Details

Notes:

mBGL - metres below ground level.

RL - Reduced Level – Surveyed elevation in metres relative to Australian Height Datum (mAHD).

TOC - top of well casing.

RL (TOC) - Surveyed elevation at TOC in mAHD.

9.2.2 Field Observations and Water Test Results

A single GME was conducted on all wells in 14 May 2018. On this date, standing water levels (SWLs) were measured within each well prior to well purging, the results of which were recorded with well purge volumes and field-based water test results. A summary of the recorded field data is presented in **Table 9-3** and copies of the completed Field Data Sheets are included in **Appendix F**.

Well ID	SWL (mBTOC)	Purge Volume (L)	DO (mg/L)	Field pH	Field EC (μS/cm)	Temp (°C)	Redox (mV)	Odours / Turbidity
BH1M	3.29	2.0	0.31	7.16	783	18.74	167.3	Hydrocarbon/ Very high
BH9M	2.60	2.0	1.43	6.62	605	17.15	181.6	None/ Very high
BH10M	2.64	2.0	1.54	6.48	226	19.46	168.5	None/ High

Table 9-3 Groundwater Field Data

Notes:

GME – Groundwater monitoring event.

SWL – Standing Water Levels as measured from TOC (top of well casing) prior to groundwater sampling.

m BTOC - metres below top of well casing (Note: Ground Level = TOC for the wells MW110, MW112 and MW114).

RL (TOC) - Reduced Level, elevation at TOC in metres relative to Australian Height Datum (mAHD).

⁺ WL - Calculated groundwater level, in m AHD (calculated as RL – SWL) Note: these values were used for groundwater contouring analysis.

L – litres (referring to volume of water purged from the well prior to groundwater sample collection).

EC – groundwater electrical conductivity as measured onsite using portable EC meter.

µS/cm - micro Siemens per centimetre (EC units).

DO - Dissolved Oxygen in units of milligrams per litre (mg/L)

Page | 37

All groundwater parameters (pH, EC and DO) were tested on site. * Well not found, presumed damaged.

SWLs recorded during the GME indicate that groundwater flows in a south-westerly direction (**Figure 3**).

The field pH data indicated that the groundwater was circumneutral (pH ranged from 6.48 – 7.16). Electrical Conductivity (EC) measurements were recorded in the range 226 to 783 μ S/cm indicating that the groundwater was fresh in terms of water salinity.

9.3 LABORATORY ANALYTICAL RESULTS

9.3.1 Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in **Table 9-4**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Table T1** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix G** and all laboratory analytical reports for tested soil samples are presented in **Appendix H**.

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
Hydrocarbons				
18	TRH F1	<25	<25	None
18	TRH F2	<25	180	HILs - None
				EILs - BH1M_0.3-0.4
18	TRH F3	<90	1,300	HILs - None
				EILs - BH1M_0.3-0.4
18	TRH F4	<120	<120	None
18	Benzene	<0.1	0.4	None
18	Toluene	<0.1	1.8	None
18	Ethyl benzene	<0.1	0.4	None
18	Total xylenes	<0.3	3.3	None
18	Naphthalene	<0.1	8.9	None
18	Benzo(a)pyrene	<0.1	10	None
18	Carcinogenic PAH	<0.3	14	HILs - BH1M_0.3-0.4
				EILs - None
18	Total PAH	<0.8	170	None
Heavy Metals				
18	Arsenic	1	15	None
18	Cadmium	<0.3	2.6	None
18	Chromium (Total)	0.5	34	None
18	Copper	1.5	7,100	HILs - BH10M_0.4-0.5
				EILs - BH10M 0.4-0.5

oil Analytical Results

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels					
18	Lead	2	850	HILs - BH10M_0.4-0.5					
18	Mercury	<0.05	0.53	None					
18	Nickel	<0.5	59	HILs - None					
				EILs - BH1M_0.3-0.4					
18	Zinc	2.1	3,800	HILs - None					
				EILs - BH1M_0.5-0.6, BH9M_0.3-0.4 and BH10M_0.4-0.5					
OCPs									
11	Total OCPs	<1	6	None					
OPPs									
11	Total OPPs	<1.7	<1.7	None					
PCBs									
11	Total PCBs	<1	<1	None					
Asbestos									
11	Asbestos	No asbestos detected	No asbestos detected	None					

Heavy Metals

With reference to **Table T1**, heavy metals concentrations in sample BH10M_0.4-0.5 (7100 mg/kg for copper and 850 mg/kg for lead), exceeded health based SILs.

Exceedances of the EILs for copper, nickel and zinc were also identified in samples BH1M 0.3-0.4 (59 mg/kg for nickel) BH1M_0.5-0.6 (1200 mg/kg for zinc), and BH9M_0.3-0.4 (420 mg/kg for zinc) and BH10M_0.4-0.5 (7100 mg/kg for copper, 3800 mg/kg for zinc).

TRHs

As shown in **Table T1**, total recoverable hydrocarbons (TRH) were reported below the corresponding adopted SILs.

Exceedances of the EILs for F2 and F3 in BH1M_0.3-0.4 (180 mg/kg for F2 and 1,300 mg/kg for F3).

BTEX and Naphthalene

BTEX was below the corresponding SIL and ESL criteria, as shown in Table T1.

Naphthalene concentrations were also below the adopted SIL and ESL criteria.

PAHs

As summarised in **Table T1**, no exceedances of the adopted EILs were identified during testing.

Exceedances of the adopted SIL criteria for were also identified in sample BH1M_0.3-0.4 (14 mg/kg) for Carcinogenic PAH criteria.

OCPs, OPPs, and PCBs

With reference to **Table T1**, no detectable concentration of any of the screened OCP, OPP, and PCB compounds was identified in any of the tested samples. All laboratory PQLs were also within the corresponding SILs and EILs/ESLs criteria.

Asbestos

As summarised in **Table T1**, asbestos fibres were not identified by the laboratory in samples collected from shallow fill.

9.3.2 Groundwater Analytical Results

Laboratory analytical results for groundwater samples are summarised in **Table T2**, which also include the adopted GILs. Completed documentation used to track groundwater sample movements and laboratory receipt (COC and SRA forms) are copied in **Appendix G**. Copies of the laboratory analytical reports are attached in **Appendix H**.

No. of primary samples	Analyte	Min. Conc. (µg/L)	Max. Conc. (µg/L)	Sample locations exceeding investigation levels						
Hydrocarbon	S									
3	F1 (C ₆ –C ₁₀)	<50	160	GILs Fresh Water Criteria: BH1M-1						
3	F2 (>C ₁₀ -C ₁₆)	<60	190	GILs Fresh Water Criteria: BH1M-1						
3	F3 (>C ₁₆ -C ₃₄)	<500	<1000	None						
3	F4 (>C ₃₄ -C ₄₀)	<500	<1000	None						
3	Benzene	<0.5	<0.5	None						
3	Toluene	<0.5	<0.5	None						
3	Ethylbenzene	<0.5	<0.5	None						
3	o-xylene	<1	<1	None						
3	m/p-xylene	<0.5	<0.5	None						
PAHs										
3	Benzo(a)pyrene	<0.1	<0.2	None						
3	Naphthalene	<0.1	<0.2	None						
Heavy Metals	5									
3	Arsenic	<1	6	None						
3	Cadmium	<0.1	<0.1	None						
3	Chromium (Total)	<1	3	None						
3	Copper	2	85	GILs Fresh Water Criteria: BH1M-1, BH3M-1						
3	Lead	1	3	None						
3	Mercury	<0.1	<0.1	None						
3	Nickel	<1	3	None						
3	Zinc	10	110	GILs Fresh Water Criteria: BH1M-1, BH3M-1						
VOCs		· 								
3	Total VOC	<10	20	None						
Phenols										
3	Total Phenolics	<0.05	<0.05	None						

Table 9-5 Summary of Groundwater Analytical Results

Heavy Metals

With reference to **Table T2** concentrations in excess of the adopted GILs were identified for groundwater as follows:

- Copper (85 µg/L in BH1M-1 and 110 µg/L in BH3M-1)
- Zinc (65 μ g/L in BH1M-1 and 92 μ g/L in BH3M-1).

Based on El's experience, heavy metal concentrations exceeding water quality criteria are ubiquitous in groundwater systems in long-standing urban/industrial environments, and not considered to represent a cause for environmental concern.

TRHs and BTEX

With reference to **Table T2** concentrations in excess of the adopted GILs were identified for groundwater as follows:

- F1 (160 µg/L in BH1M-1)
- F2 (190 µg/L in BH1M-1).

PAHs and Phenols

PAHs and Phenols were below detected above the quantitation limits (PQLs) in any sample tested. All PQLs for PAHs were below the corresponding GILs, as shown in **Table T2**.

SVOCs & VOCs

As shown in **Table T2**, all laboratory results for the tested groundwater samples BH1M and BH7M showed non-detectable levels of SVOCs and VOCs.

10. SITE CHARACTERISATION

10.1 REVIEW OF CONCEPTUAL SITE MODEL

On the basis of investigation findings the CSM discussed in **Section 5** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors.

The following data gaps have been identified:

- Potential for soil and groundwater PFAS contamination has been identified from review of council information, presented in Section 4.3. Records indicate that site structures were re-established following a fire onsite. In addition a review of previous historical site usages (Section 4.1) indicated that the site was previously used for fabric manufacturing. In light of these findings, an additional round of soil and groundwater sampling for PFAS analysis must be conducted; and
- The quality of deeper fill and natural soils in the vicinity of borehole locations BH2, BH3, BH5, and BH6 where boreholes encountered obstructions in fill.

10.2 CONFIRMED POLLUTANT LINKAGES

Based on information that was gathered from soil and groundwater sampling conducted, the following confirmed pollutant linkages have been summarised in **Table 10-1**.

Confirmed Contaminants	Contaminant Media	Migration & Exposure Pathways	Sensitive Receptor				
F2 (BH1M_0.3-0.4)	Soil	Volatilisation Inhalation	Construction workers Future site users				
Carcinogenic PAHs (BH1M_0.3-0.4)	Soil	Ingestion Inhalation Direct contact	Construction workers Future site users				
F3 (BH1M_0.3-0.4) Copper (BH10M_0.4-0.5) Lead (BH10M_0.4-0.5) Nickel (BH1M_0.3-0.4) Zinc (BH1M_0.5-0.6, BH9M_0.3-0.4 & BH10M_0.4-0.5)	Soil	Direct contact /root uptake	Vegetation in future landscaping				
F1 & F2 (BH1M-1)	Groundwater	Volatilisation Inhalation	Construction workers Future site users				
Copper & Zinc (BH1M-1 & BH10M-1)	Groundwater	Ingestion Inhalation Direct contact	Construction workers Future site users				

Table 10-1 Pollutant Linkages Model

11. CONCLUSIONS

The property located at 242-244 Young Street, Waterloo NSW was the subject of a Detailed Site Investigation that was conducted in order to assess the nature and degree of on-site contamination associated with current and former uses of the property. Findings of this investigation identified the following:

- Historical records indicate that the site has been used for commercial/industrial purposes since the 1930s, with uses including soap and fabric manufacturing, and drum re-conditioning.
 Previous investigation by SGA (2012) also a former foundry was present at the site. Records also indicated that site structures were re-established following a fire onsite in the 1960s.
- SafeWork NSW records confirmed the presence of USTs at the property historically. While no information was identified indicating that tanks had been removed from the site, the tanks locations of the tanks could not be identified.
- Previous intrusive investigation by SGA (2012), in the very northern portion of the site, identified concentrations of copper, lead, C₁₀-C₃₆ petroleum hydrocarbons, polycyclic aromatic hydrocarbons (including benzo(a)pyrene) in fill material at levels exceeding NEPC (1999) commercial/industrial guidelines. The compounds identified indicate that the contamination is likely associated with former foundry use
- As part of this investigation, soil sampling and analysis were conducted at ten (10) targeted test bore locations (BH1M, BH9M, BH10M and BH2-BH8) down to a maximum depth of 5.5 mBGL. Sampling regime was considered to be appropriate for investigation purposes and comprised a targeted sampling approach, as a systematic sampling pattern could not be undertaken due to onsite obstructions;
- The sub-surface layers comprised a layer of granular and cohesive filling overlying cohesive residual soils, with sandstone bedrock below the residual soils;
- Groundwater was encountered during monitoring at depths ranging from 2.60 to 3.29 meters BTOC;
- Soil samples identified the following contaminants at concentrations above the adopted soil investigation levels:
 - BH1M nickel, zinc, carcinogenic PAHs, F2-TRH, and F3-TRH
 - BH9M zinc
 - BH10M copper, lead and zinc
- Groundwater samples identified the following contaminants at concentrations above the adopted groundwater investigation levels:
 - BH1M & BH10M copper and zinc
- The following data gaps identified in this DSI will require closure by further investigations:
 - Potential for PFAS contamination of soil and groundwater as a result of historical site activities; and

 The quality of deeper fill and natural soils in the vicinity of borehole locations BH2, BH3, BH5, and BH6 where boreholes encountered obstructions in fill.

Based on the findings of this report, and with consideration of the Statement of Limitations (**Section 13**), EI concludes that localised contamination, and the presence of UPSS at the site, will require remediation to be performed at the site. EI consider that the site can be made suitable for the proposed development, subject to the implementation of the recommendations detailed in **Section 12** are

The works required to satisfactorily characterise and remediate the site should be completed following the demolition of all site structures. The requirement to complete these additional works can be included in Council's DA consent conditions.

12. **RECOMMENDATIONS**

It is assumed that during the proposed construction of a basement level car park as part of the development, all fill and residual soil materials will be removed from the site, therefore in view of the above findings and in accordance with the NEPM 2013 guidelines, it is considered that the site will be made suitable for the proposed residential development on completion of the following recommendations:

- Conduct a Hazardous Materials Survey (HMS) of current site structures. El recommend that a HMS is conducted prior to demolition of site structures;
- An additional site investigation (ASI) should be undertaken to close additional data gaps identified during this investigation. This would include:
 - The re-purging of the groundwater monitoring wells is to be undertaken before an additional round of groundwater sampling. Samples collected are to be tested for contaminants of concern (including PFAS);
- A Remedial Action Plan (RAP) should be prepared in accordance with the NSW Office of Environment and Heritage (2011) *Guidelines for consultants reporting on contaminated sites* prior to the commencement of site works as part of the proposed development. The RAP will provide details of the methodology and procedures required for effective site remediation, including:
 - A site inspection after demolition by a qualified environmental consultant, to determine if addition sources of environmental concern can be identified;
 - A ground penetrating radar (GPR) survey to identify the location of potential UPSS infrastructure onsite;
 - Removal of UPSS and validation resulting excavations;
 - Additional soil sampling and laboratory analysis for PFAS compounds. If additional investigation indicates the presence of PFAS compounds, impacted soils should be removed and excavations validated;
 - If additional groundwater sampling indicates the presence on hydrocarbon contamination at significantly elevated concentrations, three soil vapour wells should be installed at targeted locations across the site footprint, above the depth of groundwater, after the completion of demolition;
 - Any material being removed from site (including virgin excavated natural materials (VENM)) should be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines;
 - Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM;
 - Preparation of an unexpected finds protocol for implementation following demolition and during site excavation to ensure any potential contamination sources (e.g. soil staining,

eiaustralia

asbestos) that maybe identified are managed in accordance with the NSW EPA legislation and guidelines; and

 Preparation of a site validation report by a qualified environmental consultant, documenting the suitability of site environmental conditions for the proposed development.

13. STATEMENT OF LIMITATIONS

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to El's investigations and assessment.

EI's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither EI, nor any other reputable consultant, can provide unqualified warranties nor does EI assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

Page | 46

REFERENCES

- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.
- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia, August 2018.
- Ahern C R, Stone, Y, and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme, 3rd Ed., EPA 2017P0269/121, October 2017.
- EPA (2014) Waste Classification Guidelines, NSW EPA, November 2014.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- Murphy CL (1997) Acid Sulfate Soil Risk of the Botany Bay Sheet Department of Land and Water Conservation, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- NEMP (2018) *PFAS National Environmental Management Plan*, The Heads of the EPAs Australia and New Zealand (HEPA), January 2018.
- OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p.
- Sydney Local Environmental Plan (LEP) (20125) Acid Sulfate Soils Sheet 1:20,000 Map ASS_005, Sydney City Council, dated viewed 6 September 2018.
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.

WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.

WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

ABBREVIATIONS

ACM	Asbestos-containing materials
ASI	Additional site investigation
ASS	Acid sulfate soils
B(a)P	Benzo(a)pyrene (a PAH compound)
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
COC	Chain of Custody
COPC	Contaminants of Potential Concern
cVOCs	Chlorinated Volatile Organic Compounds (a sub-set of the VOC analysis suite)
DEC	Department of Environment and Conservation, NSW (see OEH)
DECC	Department of Environment and Climate Change, NSW (see OEH)
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)
DA	Development Application
DO	Dissolved Oxygen
DP	Deposited Plan
EC	Electrical Conductivity
Eh	Redox potential
EI	El Australia
EIL	Ecological Investigation Level
EPA	Environment Protection Authority
ESL	Ecological Screening Level
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
F2	TRH $>C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)
GIL	Groundwater Investigation Level
GME	Groundwater Monitoring Event
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
LNAPL	Light, non-aqueous phase liquid (also referred to as PSH)
DNAPL	Dense, non-aqueous phase liquid
EIL	Ecological Investigation Level
ESL	Ecological Screening Level
m	Metres
MAH	Monocyclic Aromatic Hydrocarbons
mAHD	Metres Australian Height Datum
mBGL	Metres Below Ground Level
mg/L	Milligrams per litre
µg/L	Micrograms per litre
MW	Monitoring well
NATA	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NEPM	National Environmental Protection Measure
NSW	New South Wales
OCP	Organochlorine Pesticides
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
OPP	Organphosphorus Pesticides
PAHs	Polycyclic Aromatic Hydrocarbons

PCB	Polychlorinated Biphenyl
PFAS	Per or Poly-Fluoroalkyl Substances
рН	Measure of the acidity or basicity of an aqueous solution
PQL	Practical Quantitation Limit (limit of detection for respective laboratory instruments)
QA/QC	Quality Assurance / Quality Control
RAP	Remediation Action Plan
SRA	Sample receipt advice (document confirming laboratory receipt of samples)
SWL	Standing Water Level
TDS	Total dissolved solids (a measure of water salinity)
TPH	Total Petroleum Hydrocarbons (superseded term equivalent to TRH)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
USEPA	United States Environmental Protection Agency
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)
WADOH	Western Australian Department of Health

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

FIGURES

Suite 6.01, 55 Miller Street, PYRMONT 2009

Ph (02) 9516 0722 Fax (02) 9518 5088

Scale:

Scale

Site	Locality	Plan
------	----------	------

Project: E23915.E02

LEGEND

- Approximate site boundary
- Approximate borehole location
- Approximate borehole location (SGA, 2012)
- Approximate borehole/monitoring well location
- Approximate borehole/monitoring well location (SGA, 2012)

 \geq

 \sim

Drawn:	D.R.	Pacifi
Approved:	C.S.	D 242-244
Date:	18-10-18	Ś

Fic Equity Partners Pty Ltd Detailed Site Investigation 4 Young Street, Waterloo NSW

Sampling Location Plan

Figure:

2

Project: E23915.E02

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

TABLES

Table T1 - Summary of Soil Analytical results

					Heavy	Metals					PA	Hs			BT	EX			TF	RHs					
Sample ID	Media	As	Cd	Cr	Си	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as B(o)P TEQ)	Benzo(ɑ)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	Total OCPs	Total OPPs	Total PCBs	Asbestos
BH1M_0.3-0.4	Fill	15	0.5	34	50	76	0.42	59	140	14	10	170	8.9	<0.1	<0.1	<0.1	<0.3	<25	180	1300	<120	1	<1.7	<1	No
BH1M_0.5-0.6	Fill	4	1	14	34	84	0.53	30	1200	4	2.9	69	4	0.4	1.8	0.4	3.3	<25	48	300	<120	<1	<1.7	<1	No
BH1M_1.2-1.3	Natural Sand	2	<0.3	0.5	1.5	5	< 0.05	<0.5	87	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH1M_3.4-3.5	Natural Sand	1	<0.3	2.7	2.2	10	< 0.05	0.8	66	<0.3	<0.1	<0.8	0.1	<0.1	0.2	<0.1	< 0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH2_0.1-0.2	Fill	3	<0.3	15	16	24	< 0.05	12	70	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	110	<120	<1	<1.7	<1	No
BH2_0.3-0.4	Natural Sandstone	2	<0.3	2.7	4.2	9	< 0.05	2.2	15	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH3_0.2-0.3	Fill	3	<0.3	6.5	14	13	< 0.05	21	56	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH4_0.2-0.3	Fill	5	0.7	8.9	50	180	0.25	4.3	290	1.1	0.7	9.6	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH5_0.1-0.2	Fill	3	0.3	11	28	140	0.17	10	110	1.4	1	10	0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	110	<120	6	<1.7	<1	No
BH6_0.2-0.3	Fill	3	<0.3	2.3	6.7	19	< 0.05	1.9	27	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH7_0.3-0.4	Fill	5	0.4	9.3	31	73	0.16	6.3	150	3.1	2.3	20	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	160	<120	<1	<1.7	<1	No
BH8_0.3-0.4	Fill	2	<0.3	5.5	16	33	0.07	4	55	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH8_1.7-1.8	Natural Sand	2	0.3	1.9	5	61	0.09	< 0.5	43	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH9M_0.3-0.4	Fill	7	1	12	52	210	0.23	5.8	420	0.9	0.6	6.3	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH9M_1.8-1.9	Natural Sand	2	<0.3	2.3	2	19	< 0.05	0.6	3.5	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH10M_0.4-0.5	Fill	9	2.6	5	7100	850	0.09	12	3800	0.3	0.2	1.7	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH10M_1.7-1.8	Peat	9	<0.3	5.2	9.9	10	< 0.05	2.1	18	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH10M_2.4-2.5	Natural Sand	2	<0.3	3.5	2.4	2	< 0.05	0.7	2.1	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
				1						Stat	istical Analysis	S													
Maximum Concentratio	n	15	2.6	34	7100	850	0.53	59	3800	14	10	170	8.9	0.4	1.8	0.4	3.3	<25	180	1300	<120	6	<1.7	<1	No
95% UCL		NC	NC	NC	4327	NC	NC	19	2480	4.878	NC	NC	NC	NC	NC	NC	NC	NC	64.74	446.7	NC	NC	NC	NC	NC
		1	1	500		1		1	1		SILs		/////	////	/////	////	////	/////	/////		1111				////
HIL B - Residential with minimal opportunitie	es for soil access	500	150	Cr(VI)	30000	1200	120	1200	60000	4	NR	400										NR	NR	1	
						Source	depths 0 m to <	1 mBGL					NL	3	NL	NL	230	260	NL		////				
HSL D - Commercial/Industria	al					Source	depths 1 m to <	2 mBGL					NL	3	NL	NL	NL	370	NL					////	
Soil texture classification –San	d 1					Source	depths 2 m to <	4 mBGL					NL	3	NL	NL	NL	630	NL			////		////	
						Sou	rce depths >4 m	IBGL					NL	3	NL	NL	NL	NL	NL		////		////	////	
EILs / ESLs - Residentia	1 ¹	105		205 ³	125 ³	1260 ³		35 ³	350 ³		33 ²		170	50	85	70	105	180	120	300	2,800	180		////	
Management Limits – Residential, parkland and Coarse grained soil texture	d public open space																	700	1000	2500	10000				
Asbestos contamination HSL - Resi	dential B																								0.01
Asbestos contamination HSL	for																								0.001
Notes:								/												/		/			

	Highlighted values indicates concentration exceeds Human Health Based Soil Criteria
	Highlighted values indicates concentration exceeds Ecological Based Soil Criteria
HIL B	NEPC 1999 Amendment 2013 'HIL B' Health Based Investigation Levels applicable for residential exposure settings with minimal opportunities for soil access, including dwellings with fully and permanently paved yard space such as high rise buildings and apartments.
*	NEPM (2013) ESL Moderate Reliability Criteria
NR	No current published criterion.
NL	Not Limiting' If the derived soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical
-	'Not Tested' i.e. the sample as not analysed.
1	Coarse Grained soil values were applied, being the most conservative of the material types.
2	Ecological criteria for Benzo(a)pyrene selected from CRC Care Report No. 39 (2017)
3	EIL Criteria is calculated from summing the ACL and the ABC threshold values
F1	TPH C ₆ -C ₁₀ less the sum concentration of BTEX.
F2	TPH $C_{>10}$ - C_{16} less the concentration of Naphthalene.
F3	TPH C ₋₁₆ -C ₃₄
F4	TPH C _{>34} -C ₄₀

	A B C	DE	F	G	Н			J	r	ĸ		L		
1		UCL Statis	stics for Unc	ensored Full	Data Sets									
2	2 User Selected Options													
3	Date/Time of Computation	3/00/2018 10·01·44 AM												
4	Erom Filo	WorkShoot vis												
5	FIULI Precision	OFF												
6	Confidence Coefficient	95%												
7	Number of Bootstran Operations	2000												
8		2000												
9														
10	Copper													
11	Coppor													
12			General	Statistics										
13	Tota	al Number of Observations	18			Numb	per of D	Distinct	Observ	ations	1	6		
14						Numb	er of N	lissing	Observ	ations	C)		
10		Minimum	1.5							Mean	41	2.5		
10		Maximum	7100						N	ledian	1	5		
1/ 19		SD	1669					Std.	Error of	Mean	39	3.4		
10		Coefficient of Variation	4.046						Ske	wness	4	.242		
20														
20 21			Normal	GOF Test										
27		Shapiro Wilk Test Statistic	0.261			Shapiro \	Wilk G	OF Tes	st					
23	5% 5	Shapiro Wilk Critical Value	0.897		Data Not	Normal a	at 5% S	ignifica	ance Le	vel				
23		Lilliefors Test Statistic	0.53		Lilliefors GOF Test									
25		5% Lilliefors Critical Value	0.209		Data Not Normal at 5% Significance Level									
26		Data Not	Normal at §	5% Significar	nce Level									
27														
28		As	suming Nor	mal Distributi	ion									
29	95% N	lormal UCL			95% (UCLs (Ad	ljusted	for Sk	ewness	;)				
30		95% Student's-t UCL	1097	95% Adjusted-CLT UCL (Chen-1995) 1480							30			
31					(95% Mod	ified-t l	JCL (Jo	ohnson-	-1978)	116	52		
32														
33			Gamma	GOF Test						_				
34		A-D Test Statistic	3.734											
35		5% A-D Critical Value	0.88	Kolmo gravi Oreira off Oceano OOF Toot										
36		K-S Test Statistic	0.449	D		rov-Smirr	noπ Ga			st	-			
37		5% K-S Critical Value		Date 59/ Sig			outed at	15% 51	gnifican	ICE LEV	ei			
38				eu ai u 70 Olg										
39			Gamma	Statistics										
40		k hat (MLE)	0.22				k star (bias cr	orrected		ſ) 22		
41		Theta hat (MLE)	1874			Thet	a star (orrected		187	71		
42		nu hat (MLE)	7.924			inct	nıı	star (h	ias corr	ected)	7	7.937		
43	Λ	/LE Mean (bias corrected)	412.5	412.5 MI E Sd /bios						ected)	87	8.5		
44		(A	pproxima	ate Chi	Sauare	e Value	(0.05)	- 2	2.699		
45	Adiu	usted Level of Significance	0.0357				Adjuste	ed Chi	Square	Value	2	2.414		
46		- 3					,							
4/		Ass	suming Gan	nma Distribut	ion									
4ð ⊿0	95% Approximate Gamm	a UCL (use when n>=50))	1213		95% Adjı	usted Gar	mma U	CL (us	e when	n<50)	135	56		
49 50	··· ·				,					,				
50			Lognorma	I GOF Test										
52		Shapiro Wilk Test Statistic	0.833		Shapi	ro Wilk L	ognorr	nal GC	F Test					
JZ		-		<u> </u>	•		-							

		Г	G II I J K	L								
53	5% Shapiro Wilk Critical Value	0.897	Data Not Lognormal at 5% Significance Level									
54	Lilliefors Test Statistic	0.209	Lilliefors Lognormal GOF Test									
55	5% Lilliefors Critical Value	0.209	Data Not Lognormal at 5% Significance Level									
56	Data Not L	ognormal at	5% Significance Level									
57												
58		Lognorma	I Statistics									
59	Minimum of Logged Data	0.405	Mean of logged Data	2.729								
60	Maximum of Logged Data	8.868	SD of logged Data	1.941								
61												
62	Assuming Lognormal Distribution											
63	95% H-UCL	/29.6	90% Chebyshev (MVUE) UCL	209.6								
64	95% Chebyshev (MVUE) UCL	268.7	97.5% Chebyshev (MVUE) UCL	350.8								
65	99% Chebyshev (MVUE) UCL	512										
66												
67	Nonparame	tric Distribu										
68		bilow a Disc										
69	Nama	en etrie Die										
70				1007								
71	95% CLT UCL	1060		1097								
72	95% Standard Bootstrap UCL	10500	95% Bootstrap-t UCL 4	43435								
73	95% Hall's Bootstrap UCL	19000	95% Percentile Bootstrap UCL	1198								
74	95% BCA Bootstrap UCL	1597		2127								
75	90% Chebyshev(Mean, Sd) UCL	1593	95% Chebyshev(Mean, Sd) UCL	2127								
76	97.5% Chebysnev(Mean, Sd) UCL	2869	99% Chebysnev(Mean, Sd) UCL	4327								
77		Suggested										
78	00% Chebyshey (Mean Sd) UCL											
79	99% Chebysnev (Mean, Su) OCL	4327										
80	Note: Suggestions regarding the selection of a 95%		avided to help the user to select the most appropriate 95% LICL									
81	These recommendations are based upon the rec	ulto of the ci	mulation studios summarized in Singh, Singh, and Iosi (2002)									
82	and Singh and Singh (2003). However		include studies summarized in Singh, Singh, and laci (2002)									
83	Eor additional insid	t the user m	his results will not cover all near world data sets.									
84		it the user in										
85												
86	Nickel											
87												
88		General	Statistics									
89	Total Number of Observations	18	Number of Distinct Observations	16								
90		-	Number of Missing Observations	0								
91	Minimum	0.25	Mean	9.622								
92	Maximum	59	Median	4.15								
93	SD	14.68	Std. Error of Mean	3.461								
94 05	Coefficient of Variation	1.526	Skewness	2.61								
90												
90		Normal C	GOF Test									
9/	Shapiro Wilk Test Statistic	0.659	Shapiro Wilk GOF Test									
30	5% Shapiro Wilk Critical Value	0.897	Data Not Normal at 5% Significance Level									
99 100	Lilliefors Test Statistic	0.269	Lilliefors GOF Test									
100	5% Lilliefors Critical Value	0.209	Data Not Normal at 5% Significance Level									
107	Data Not	Normal at 5	i% Significance Level									
102												
103	As	suming Norr	nal Distribution									
104		-										

	A	В	С	D	E	⊢	G	H I J K	L
105			95% Normal	UCL		45.04		95% UCLs (Adjusted for Skewness)	50
106			9:	5% Stu	dent's-t UC	_ 15.64		95% Adjusted-CLT UCL (Chen-1995) 17	.59
107								95% Modified-t UCL (Jonnson-1978)	
108						Commo			
109				<u> </u>	Tost Statisti			Anderson Darling Commo COE Tost	
110			59		ritical Value	0.334	Detecte	ad data appear Gamma Distributed at 5% Significance Lev	امر
111			57	K-8.	Toet Statisti	c 0.125	Delecte	Kolmogrov-Smirnoff Gamma GOF Test	VCI
112			59	<u>6 K-S (</u>	Critical Value	□ 0.123	Detecte	ed data annear Gamma Distributed at 5% Significance Lev	vel
113					data anne	ar Gamma Di	istributed at !	5% Significance Level	VCI
114									
115						Gamma	Statistics		
116					k hat (MLE) 0.609		k star (bias corrected MLE) 0.	545
117				The	ta hat (MLE) 15.79		Theta star (bias corrected MLE) 17	.66
110					nu hat (MLE) 21.94		nu star (bias corrected) 19	.62
119			MLE Me	ean (bia	as corrected) 9.622		MLE Sd (bias corrected) 13	.03
120						·		Approximate Chi Square Value (0.05) 10	.57
121			Adjusted L	evel of	Significance	e 0.0357		Adjusted Chi Square Value 9.	936
122									
123					A	ssuming Gan	nma Distribu	ution	
125	9	95% Approx	imate Gamma UCL	_ (use \	when n>=50) 17.86		95% Adjusted Gamma UCL (use when n<50) 19	
126									
127						Lognorma	I GOF Test		
128			Shapiro	o Wilk	Test Statisti	c 0.971		Shapiro Wilk Lognormal GOF Test	
129			5% Shapiro	Wilk (Critical Value	e 0.897		Data appear Lognormal at 5% Significance Level	
130			Lill	liefors	Test Statisti	c 0.1		Lilliefors Lognormal GOF Test	
131			5% Lilli	iefors (Critical Value	e 0.209		Data appear Lognormal at 5% Significance Level	
132					Data appea	ar Lognormal	at 5% Signif	ificance Level	
133									
134						Lognorma	al Statistics		
135			Minim	um of	Logged Data	a -1.386		Mean of logged Data 1.	253
136			Maxim	ium of	Logged Data	a 4.078		SD of logged Data 1.	595
137					A		anna al Diatrik	huddour.	
138							ormai Distrid		45
139			05% Chab	(abov (22.05		90% Chebyshev (MVUE) UCL 25	.45
140			95 % Cheby			50.18		97.5% Chebyshev (MVOE) OCL 41	.2
141			33 % Cheby	ysnev (59.10			
142					Nonnaran	etric Distribu	ition Free LIC	CL Statistics	
143			Data	annea	r to follow a	Discernible	Distribution	at 5% Significance Level	
144			Data	appoo			Distribution		
145					Nonp	arametric Dis	tribution Fre	ee UCLs	
146				95	5% CLT UC	15.32		95% Jackknife UCL 15	.64
14/			95% Stand	dard Bo	otstrap UC	L 15.3		95% Bootstrap-t UCL 23	.29
148			95% H	all's Bo	otstrap UC	38.44		95% Percentile Bootstrap UCL 15	.76
149			95% E	BCA Bo	otstrap UC	18.22		· · ·	
151			90% Chebysh	nev(Me	an, Sd) UC	L 20.01		95% Chebyshev(Mean, Sd) UCL 24	.71
157			97.5% Chebysh	nev(Me	an, Sd) UC	L 31.24		99% Chebyshev(Mean, Sd) UCL 44	.06
153							1		
154						Suggested	UCL to Use	9	
155			95% Adj	usted (Gamma UC	L 19			
156									
							1		

	A B C D E	F	G H I J K	L
157	Note: Suggestions regarding the selection of a 95%	UCL are pro	by ided to help the user to select the most appropriate 95% UCL.	
158	I nese recommendations are based upon the res	uits of the sil	nulation studies summarized in Singh, Singh, and Iaci (2002)	
159	and Singh and Singh (2003). Howev	er, simulatio	ns results will not cover all Real World data sets.	
160	For additional insign	it the user m	ay want to consult a statistician.	
161				
162	0			
163	Carc PAHs			
164		0		
165	Total Number of Observations		Statistics	0
166	I otal Number of Observations	18	Number of Distinct Observations	8
167	Minimum	0.15	Number of Missing Observations	0
168	Maximum	0.15	Media	0.15
169	Maximum	14		0.15
170	SD Coefficient of Verietion	3.317	Sta. Error of Mean	0.782
171		2.237	Skewness	3.555
172		Normal (NOE Toot	
173	Shanira Will Toot Statiatia		Shanira Wilk GOE Taat	
174	5% Shanira Wilk Critical Value	0.40	Data Not Normal at 5% Significance Lovel	
175		0.037		
176	5% Lilliefors Critical Value	0.040	Data Not Normal at 5% Significance Level	
177	Data Not	Normal at 5	% Significance Level	
178				
179	Ass	sumina Norr	nal Distribution	
180	95% Normal UCL	Juning Ton	95% UCLs (Adjusted for Skewness)	
181	95% Student's-t UCL	2.83	95% Adjusted-CLT UCL (Chen-1995)	3.456
182			95% Modified-t UCL (Johnson-1978)	2.939
103				
104		Gamma (GOF Test	
186	A-D Test Statistic	2.615	Anderson-Darling Gamma GOF Test	
187	5% A-D Critical Value	0.803	Data Not Gamma Distributed at 5% Significance Level	
188	K-S Test Statistic	0.354	Kolmogrov-Smirnoff Gamma GOF Test	
189	5% K-S Critical Value	0.215	Data Not Gamma Distributed at 5% Significance Level	
190	Data Not Gamn	na Distribute	ed at 5% Significance Level	
191				
192		Gamma	Statistics	
193	k hat (MLE)	0.488	k star (bias corrected MLE)	0.444
194	Theta hat (MLE)	3.011	Theta star (bias corrected MLE)	3.312
195	nu hat (MLE)	17.57	nu star (bias corrected)	15.97
196	MLE Mean (bias corrected)	1.469	MLE Sd (bias corrected)	2.206
197			Approximate Chi Square Value (0.05)	7.944
198	Adjusted Level of Significance	0.0357	Adjusted Chi Square Value	7.404
199				
200	Ass	uming Gam	ma Distribution	
201	95% Approximate Gamma UCL (use when n>=50))	2.955	95% Adjusted Gamma UCL (use when n<50)	3.17
202			· · · · ·	
203		Lognormal	GOF Test	
204	Shapiro Wilk Test Statistic	0.721	Shapiro Wilk Lognormal GOF Test	
205	5% Shapiro Wilk Critical Value	0.897	Data Not Lognormal at 5% Significance Level	
206	Lilliefors Test Statistic	0.36	Lilliefors Lognormal GOF Test	
207	5% Lilliefors Critical Value	0.209	Data Not Lognormal at 5% Significance Level	
		-		

	A	В	С	D	E	F	G	Н		J	K	L		
209						Lognorme	Statiation							
210				Minimum of I	ord Data									
211			P	Maximum of I	orded Data	2 639								
212			•		Loggou Dulu	2.000				02.01	logged Data			
213					Assı	umina Loana	ormal Distrib	ution						
214					95% H-UCL	3.763			90%	Chebyshev	(MVUE) UCL	2.28		
215			95%	Chebyshev (MVUE) UCL	2.845			97.5%	Chebyshev	(MVUE) UCL	3.629		
210			99%	Chebyshev (MVUE) UCL	5.168					· ·			
217														
219					Nonparame	etric Distribu	tion Free UC	L Statistics						
220	Data do not follow a Discernible Distribution (0.05)													
221														
222					Nonpa	rametric Dis	tribution Fre	e UCLs						
223				95	5% CLT UCL	2.755				95% Ja	ackknife UCL	2.83		
224			95%	Standard Bo	ootstrap UCL	2.721				95% Bo	otstrap-t UCL	6.249		
225			ç	95% Hall's Bo	ootstrap UCL	6.798			95%	Percentile B	ootstrap UCL	2.956		
226				95% BCA Bo	ootstrap UCL	3.781								
227			90% Ch	nebyshev(Me	an, Sd) UCL	3.815			95% Cł	nebyshev(Me	ean, Sd) UCL	4.878		
228			97.5% Ch	nebyshev(Me	an, Sd) UCL	6.352			99% Cł	nebyshev(Me	ean, Sd) UCL	9.249		
229														
230						Suggested	UCL to Use							
231			95% Ch	ebyshev (Me	an, Sd) UCL	4.878					1			
232		Notes Occase												
233		These res	stions regard		tion of a 95%	UCL are pr	ovided to hel	p the user to		host appropr				
234		These rec		and Singh (2	2003) Howey			ill not covor		II, SIIIYII, alio				
235			and Singh	For ad	ditional insid	ht the user m	av want to c							
236				10100										
237														
230 220	F2													
239														
240						General	Statistics							
242			Total	Number of C	Observations	18			Numbe	r of Distinct	Observations	3		
243									Numbe	r of Missing	Observations	0		
244					Minimum	12.5					Mean	23.78		
245					Maximum	180					Median	12.5		
246					SD	39.87				Std. E	Error of Mean	9.398		
247				Coefficient	t of Variation	1.677					Skewness	3.971		
248														
249						Normal C	GOF Test							
250			S	Shapiro Wilk	Test Statistic	0.323			Shapiro W	ilk GOF Tes	t			
251			5% S	napiro Wilk C	Critical Value	0.897		Data No	ot Normal at	5% Significa	nce Level			
252					est Statistic	0.5		D-1. 1	Lilliefors		noo !			
253			5	5% LIIIIeTOrs C	Dete Net	U.209	W Significa		DI NORMAL AL	5% Significa	IICE LEVEI			
254						normal at 5	o o significal	ICE LEVEI						
255					۵۵	suming Nor	nal Dietribut	ion						
256			95% N		~5			05%	UCI e (Adiu	isted for Ska	WNess)			
257			0070140	95% Stu	dent's-t UCI	40.13		357	95% Adjuste		(Chen-1995)	48 64		
258									95% Modifi	ed-t UCL (Jo	hnson-1978)	41.59		
259						<u> </u>	<u> </u>			(30	/			
∠0U														

	A B C D E	F	G H I J K	L							
261		Gamma									
262	A-D Lest Statisti	c 5.596	Anderson-Darling Gamma GOF Test								
263	5% A-D Critical Valu	e 0.76	Kolmogrov Smirnoff Commo COE Toot								
264		C 0.532	Kolmogrov-Smirnoff Gamma GOF Test								
265	5% K-S Critical Valu	e 0.208	U.208 Data Not Gamma Distributed at 5% Significance Level								
266											
267		Gamma	Statistics								
268	k bat (MI F		k star (bias corrected MLE)	1 147							
269	Theta hat (MLE	17 85	Theta star (bias corrected MLE)	20.73							
270	nu hat (MLE	() 47.96	nu star (bias corrected)	11.3							
2/1	MLE Mean (bias corrected) 23.78	MLE Sd (bias corrected) 2	22.2							
272			Approximate Chi Square Value (0.05) 2	27.57							
273	Adjusted Level of Significanc	e 0.0357	Adjusted Chi Square Value 2	26.5							
274		-									
275	A	ssuming Gam	nma Distribution								
270	95% Approximate Gamma UCL (use when n>=50)) 35.62	95% Adjusted Gamma UCL (use when n<50)	37.06							
277		,									
270		Lognorma	I GOF Test								
279	Shapiro Wilk Test Statisti	c 0.377	Shapiro Wilk Lognormal GOF Test								
281	5% Shapiro Wilk Critical Valu	e 0.897	Data Not Lognormal at 5% Significance Level								
282	Lilliefors Test Statisti	c 0.516	Lilliefors Lognormal GOF Test								
283	5% Lilliefors Critical Valu	e 0.209	Data Not Lognormal at 5% Significance Level								
284	Data Not	Lognormal at	5% Significance Level								
285											
286		Lognorma	I Statistics								
287	Minimum of Logged Dat	a 2.526	Mean of logged Data	2.749							
288	Maximum of Logged Dat	a 5.193	SD of logged Data	0.687							
289		·									
290	As	suming Logno	ormal Distribution								
291	95% H-UC	L 28.66	90% Chebyshev (MVUE) UCL 2	29.51							
292	95% Chebyshev (MVUE) UC	L 34.06	97.5% Chebyshev (MVUE) UCL	10.37							
293	99% Chebyshev (MVUE) UC	L 52.77									
294											
295	Nonparan	netric Distribu	tion Free UCL Statistics								
296	Data do not	follow a Disc	ernible Distribution (0.05)								
297	N										
298				10.12							
299	95% CLT UC	L 39.24		iu. 13							
300	95% Standard Bootstrap UC		95% Bootstrap-LOCL N	I/A							
301			95% Percentile Bootstrap UCL N	WA							
302		L N/A	95% Chobychov/Moon Sd) UCL	54 74							
303	97 5% Chebyshev(Mean, Sd) UC	L 31.37	93 / Onebyshev(Mean, Su) UCL 0	17.3							
304		L 02.47		17.5							
305		Sunnested	UCL to Use								
306	95% Chebyshev (Mean Sd) UC	L 64.74									
307											
308	Note: Suggestions regarding the selection of a 95	% UCL are nr	ovided to help the user to select the most appropriate 95% UCI								
309	These recommendations are based upon the re	esults of the si	mulation studies summarized in Singh, Singh, and Iaci (2002)								
31U 211	and Singh and Singh (2003). How	ever, simulatio	ons results will not cover all Real World data sets.								
317	For additional insi	ght the user m	nay want to consult a statistician.								
JIZ		-									

	<u> </u>	В	C	D	E	F	G	H		J		K	L		
313															
314	F 3														
315															
316	General Statistics														
317			Tota	I Number of (Observations	18			Numb	er of Distind	t Obser	rvations	5		
318						-			Numb	er of Missin	g Obser	rvations	0		
319					Minimum	45						Mean	142.5		
320					Maximum	1300						Median	45		
321					SD	296.1		Std. Error of Mean							
323				Coefficien	t of Variation	2.078					Sk	ewness	3.932		
324															
325	Normal GOF Test														
326			;	Shapiro Wilk	Test Statistic	0.376			Shapiro V	Vilk GOF Te	əst				
327			5% 5	Shapiro Wilk (Critical Value	0.897		Data No	t Normal a	t 5% Signifi	cance L	evel			
328				Lilliefors	Test Statistic	0.377			Lilliefor	s GOF Tes	t				
329				5% Lilliefors (Critical Value	0.209		Data No	t Normal at	t 5% Signifi	cance L	evel			
330					Data Not	Normal at 5	5% Significa	nce Level							
331															
332					As	suming Norr	mal Distribu	tion							
333			95% N			202.0		95%	UCLs (Ad	justed for S	kewnes	SS)	200.4		
334				95% Sti	ident's-t UCL	263.9			95% Adjus	ted-CLT UC		n-1995)	326.4		
335									95% MOU	nea-t UCL (Jonnson	n-1978)	274.7		
336						Gamma (GOE Test								
337				A-D	Test Statistic	3 761	761 Anderson-Darling Gamma GOF Test								
338				5% A-D (Critical Value	0.773	Data Not Gamma Distributed at 5% Significance Level								
339				K-S	Test Statistic	0.416	Kolmogrov-Smirnoff Gamma GOF Test								
340				5% K-S (Critical Value	0.211	D	ata Not Gam	ma Distrib	uted at 5% \$	Significa	ance Lev	el		
341				Da	ata Not Gami	na Distribute	ed at 5% Sig	gnificance Le	vel						
343															
344						Gamma	Statistics								
345					k hat (MLE)	0.852			ŀ	k star (bias o	correcte	ed MLE)	0.747		
346				The	eta hat (MLE)	167.2			Theta	a star (bias o	correcte	ed MLE)	190.7		
347					nu hat (MLE)	30.68				nu star (bias cor	rrected)	26.9		
348			Ν	ILE Mean (bi	as corrected)	142.5				MLE Sd (bias cor	rrected)	164.8		
349									Approxima	te Chi Squa	re Value	e (0.05)	16.08		
350			Adju	sted Level of	Significance	0.0357			/	Adjusted Ch	ii Square	e Value	15.27		
351					-		B 1 - ···								
352	ļ		mata O		As:	suming Gam	ima Distribu						051		
353	, ,	ao% Approxir	mate Gamm	a UCL (use v	vrien n>=50))	238.5		95% Ad	justed Gan	nma UCL (u	se whe	n n<50)	251		
354						lognormal									
355				Shaniro Wilk	Test Statistic		GOF TEST	Sher		onormal C		.t			
356			5% 5	Shapiro Wilk	Critical Value	0.332		Data Not I		at 5% Signi	ificance	level			
357			0700	Lilliefors	Test Statistic	0.415		Lill	liefors Log	normal GO	F Test				
358				5% Lilliefors (Critical Value	0.209		Data Not I	Lognormal	at 5% Siani	ificance	Level			
359					Data Not L	.ognormal at	5% Signific	ance Level		2.2.9.1					
300							3								
363						Lognorma	I Statistics								
362				Minimum of	Logged Data	3.807				Mean	of logge	ed Data	4.269		
364				Maximum of	Logged Data	7.17				SD	of logge	ed Data	0.916		
	А	В	С	D	Е	F	G	Н		J	К	L			
-----	--	--------------	---------------	----------------	----------------	-----------------	------------------------------	----------------------------	---------------	---------------	---------------	-------	--	--	
365															
366					Ass	uming Logno	rmal Distrib	ution							
367					95% H-UCL	190.3			90%	Chebyshev	(MVUE) UCL	180.2			
368			95%	Chebyshev (MVUE) UCL	214.1		97.5% Chebyshev (MVUE) UCL							
369			99%	Chebyshev (MVUE) UCL	353.7									
370															
371					Nonparame	etric Distribu	tion Free UC	CL Statistics							
372	Data do not follow a Discernible Distribution (0.05)														
373															
374	Nonparametric Distribution Free UCLs														
375	95% CLT UCL 257.3 95% Jackknife UCL									263.9					
376	95% Standard Bootstrap UCL 249.3 95% Bootstrap-									otstrap-t UCL	898.8				
377			ç	5% Hall's Bo	otstrap UCL	675.2	95% Percentile Bootstrap UCL								
378				95% BCA Bo	otstrap UCL	341.7									
379			90% Cł	ebyshev(Me	an, Sd) UCL	351.9			95% Cł	nebyshev(M	ean, Sd) UCL	446.7			
380			97.5% Cł	ebyshev(Me	an, Sd) UCL	578.4			99% Cł	nebyshev(M	ean, Sd) UCL	836.9			
381															
382						Suggested	UCL to Use								
383			95% Ch	ebyshev (Me	an, Sd) UCL	446.7									
384															
385	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pro	ovided to hel	p the user to	select the n	nost approp	riate 95% UCL				
386		These reco	ommendatio	ns are based	upon the res	sults of the si	mulation stud	dies summa	rized in Sing	h, Singh, an	d laci (2002)				
387			and Singh	and Singh (2	2003). Howe	/er, simulatio	ns results wi	ill not cover a	all Real Worl	d data sets.					
388				For ad	ditional insig	ht the user m	ay want to c	onsult a stat	istician.						
389															

1				<u> </u>	<u> </u>			L			
		UCL Statis	tics for Unc	ensored Full	Data Sets						
2	Lloar Salastad Ontion	<u> </u>									
3	Date/Time of Computation	>									
4	From File	WorkSheet vis									
5	Full Precision										
6	Confidence Coefficient	95%									
7	Number of Bootstrap Operations	2000									
8											
9											
10	Zinc										
12											
12			General	Statistics							
14	Tota	I Number of Observations	18	Number of Distinct Observations 18							
15						Number of Missing Observat	ions	0			
16		Minimum	2.1			N	ean	364			
17		Maximum	3800			Me	dian	68			
18		SD	902.1			Std. Error of N	ean	212.6			
19	1	Coefficient of Variation	2.478			Skewr	iess	3.671			
20]										
21	Normal GOF Test										
22	(Shapiro Wilk Test Statistic	0.431		:	Shapiro Wilk GOF Test					
23	5% S	Shapiro Wilk Critical Value	0.897		Data Not	Normal at 5% Significance Leve					
24		Lilliefors Test Statistic	0.372			Lilliefors GOF Test					
25		5% Lilliefors Critical Value	0.209		Data Not	Normal at 5% Significance Leve	I				
26	Data Not Normal at 5% Significance Level										
27											
28			suming Nor	mai Distributi	on OF (1	ICL a (Adjusted for Okaumaaa)					
29	95% N		722.0		95% (JCLS (Adjusted for Skewness)		010.4			
30	-	95% Student S-t UCL	/33.9	95% Adjusted-CLT UCL (Chen-1995) 910.4							
31							,,,,,	704.0			
32											
			Gamma	GOF Test							
33		A-D Test Statistic	Gamma	GOF Test	Anders	on-Darling Gamma GOF Test					
33 34		A-D Test Statistic	Gamma 1.201 0.819	GOF Test	Anders	on-Darling Gamma GOF Test	e Leve	el			
33 34 35		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	Gamma 1.201 0.819 0.259	GOF Test	Anders ata Not Gamn Kolmogr	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test	e Levo	əl			
33 34 35 36		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	Gamma 1.201 0.819 0.259 0.218	GOF Test	Anders ata Not Gamn Kolmogr ata Not Gamn	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance	e Leve	el			
33 34 35 36 37 38		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn	Gamma 1.201 0.819 0.259 0.218 na Distribut	GOF Test	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el	e Leve	əl			
33 34 35 36 37 38 39		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn	Gamma 1.201 0.819 0.259 0.218 na Distribut	GOF Test	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el	e Leve	əl əl			
33 34 35 36 37 38 39 40		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn	Gamma (1.201 0.819 0.259 0.218 na Distributa Gamma	GOF Test Da Da Calculate Statistics	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el	e Levo	əl Əl			
33 34 35 36 37 38 39 40 41		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE)	Gamma 1.201 0.819 0.259 0.218 na Distribut Gamma 0.409	GOF Test	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el k star (bias corrected M	e Leve	əl əl 0.378			
33 34 35 36 37 38 39 40 41 42		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE)	Gamma 1.201 0.819 0.259 0.218 na Distribut Gamma 0.409 890.4	GOF Test Da Da Calculate Statistics	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el k star (bias corrected M Theta star (bias corrected M	e Leve	el el 0.378 963.7			
33 34 35 36 37 38 39 40 41 42 43		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE)	Gamma 1.201 0.819 0.259 0.218 na Distribut Gamma 0.409 890.4 14.72	GOF Test	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el k star (bias corrected M Theta star (bias corrected M nu star (bias corrected M	e Levo e Levo ILE) ILE) ILE)	el el 0.378 963.7 13.6			
33 34 35 36 37 38 39 40 41 42 43 44		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE) ILE Mean (bias corrected)	Gamma 1.201 0.819 0.259 0.218 na Distribut Gamma 0.409 890.4 14.72 364	GOF Test	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el k star (bias corrected M Theta star (bias corrected M nu star (bias corrected M MLE Sd (bias corrected	Elever El	el el 0.378 963.7 13.6 592.3			
33 34 35 36 37 38 39 40 41 42 43 44 45		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE) ILE Mean (bias corrected)	Gamma 1.201 0.819 0.259 0.218 na Distribut Gamma 0.409 890.4 14.72 364	GOF Test Da Da Da Control Da Cont	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el k star (bias corrected M Theta star (bias corrected M nu star (bias corrected M nu star (bias corrected M pproximate Chi Square Value (0)	Elever El	el 0.378 963.7 13.6 592.3 6.298			
33 34 35 36 37 38 39 40 41 42 43 44 45 46	M	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE) 1LE Mean (bias corrected) sted Level of Significance	Gamma 1.201 0.819 0.259 0.218 na Distribut Gamma 0.409 890.4 14.72 364 0.0357	GOF Test	Anders ata Not Gamn ata Not Gamn nificance Lev	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el k star (bias corrected M Theta star (bias corrected M Inu star (bias corrected M MLE Sd (bias corrected pproximate Chi Square Value (0 Adjusted Chi Square V	Eleventities Leventities Leventitis Leventities Leventities Leventities Leventities Levent	el 0.378 963.7 13.6 592.3 6.298 5.826			
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE) 1LE Mean (bias corrected) sted Level of Significance	Gamma 1.201 0.819 0.259 0.218 na Distribut Gamma 0.409 890.4 14.72 364 0.0357	GOF Test Da Da Da Gof at 5% Sig Statistics	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el k star (bias corrected M Theta star (bias corrected M nu star (bias corrected M nu star (bias corrected M Aljusted Chi Square V	Eleventian	el 0.378 963.7 13.6 592.3 6.298 5.826			
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	M Adju	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE) 1LE Mean (bias corrected) sted Level of Significance Ass	Gamma 1.201 0.819 0.259 0.218 na Distribut Gamma 0.409 890.4 14.72 364 0.0357 suming Gam	GOF Test	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev A	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el k star (bias corrected M Theta star (bias corrected M nu star (bias corrected M NLE Sd (bias corrected M Pproximate Chi Square Value (0 Adjusted Chi Square V	Elevention Elevention Elevention Elevention Eleventic El	el 0.378 963.7 13.6 592.3 6.298 5.826			
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	M Adju 95% Approximate Gamma	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE) 1LE Mean (bias corrected) isted Level of Significance Ass a UCL (use when n>=50))	Gamma 1.201 0.819 0.259 0.218 na Distribut Gamma 0.409 890.4 14.72 364 0.0357 suming Gam 786.1	GOF Test Da Da Da Control Da	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev A A	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el k star (bias corrected M Theta star (bias corrected M nu star (bias corrected M nu star (bias corrected M nu star (bias corrected M Aljusted Chi Square Value (0 Adjusted Chi Square Value value (0 Adjusted Chi Square Value (0)	Eleventian elevetta eleventian el	el 0.378 963.7 13.6 592.3 6.298 5.826 849.8			
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	M Adju 95% Approximate Gamma	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE) 1LE Mean (bias corrected) isted Level of Significance Ass a UCL (use when n>=50))	Gamma 1.201 0.819 0.259 0.218 na Distribut Gamma 0.409 890.4 14.72 364 0.0357 suming Gam 786.1	GOF Test Da Da Da Control Da Da Da Da Control Da Control Da Da Da Control Da Da Control	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev A A	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el k star (bias corrected M Theta star (bias corrected M Theta star (bias corrected M nu star (bias corrected M NLE Sd (bias corrected M Adjusted Chi Square V usted Gamma UCL (use when n-	Elevent Ele	el 0.378 963.7 13.6 592.3 6.298 5.826 849.8			
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	M Adju 95% Approximate Gamm	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE) 1LE Mean (bias corrected) isted Level of Significance Ass a UCL (use when n>=50))	Gamma 1.201 0.819 0.259 0.218 na Distribut Gamma 0.409 890.4 14.72 364 0.0357 suming Gam 786.1 Lognorma	GOF Test	Anders ata Not Gamn Kolmogr ata Not Gamn nificance Lev A A	on-Darling Gamma GOF Test na Distributed at 5% Significance ov-Smirnoff Gamma GOF Test na Distributed at 5% Significance el k star (bias corrected M Theta star (bias corrected M nu star (bias corrected M nu star (bias corrected M nu star (bias corrected M Adjusted Chi Square Value (0 Adjusted Chi Square V usted Gamma UCL (use when n-	Eleventian elevetta eleventian el	el 0.378 963.7 13.6 592.3 6.298 5.826 849.8			

		Г	G H I J K	L							
53	5% Shapiro Wilk Critical Value	0.897	Data appear Lognormal at 5% Significance Level								
54	Lilliefors Test Statistic	0.126	Lilliefors Lognormal GOF Test								
55	5% Lilliefors Critical Value	0.209	Data appear Lognormal at 5% Significance Level								
56	Data appear	Lognormal	at 5% Significance Level								
57											
58		Lognorma	I Statistics								
59	Minimum of Logged Data	0.742	Mean of logged Data	4.293							
60	Maximum of Logged Data	8.243	SD of logged Data	1.836							
61											
62	Assu	iming Logno	rmal Distribution								
63	95% H-UCL	2362	90% Chebyshev (MVUE) UCL	821.9							
64	95% Chebyshev (MVUE) UCL	1049	97.5% Chebyshev (MVUE) UCL	1363							
65	99% Chebyshev (MVUE) UCL	1981									
66											
67	Nonparame	tric Distribu	tion Free UCL Statistics								
68	Data appear to follow a l	Discernible	Distribution at 5% Significance Level								
60	9										
70	Nonpar	ametric Dist	ribution Free UCLs								
70	95% CLT UCL	713.8	95% Jackknife UCL	733.9							
71	95% Standard Bootstrap UCL	695.7	95% Bootstrap-t UCL	2753							
72	95% Hall's Bootstrap UCL	2112	95% Percentile Bootstrap UCL	759							
73	95% BCA Bootstrap UCL	963.9									
74	90% Chebyshev(Mean, Sd) UCL	1002	95% Chebyshev(Mean, Sd) UCL	1291							
75	97.5% Chebyshev(Mean. Sd) UCL	1692	99% Chebyshev(Mean, Sd) UCL	2480							
76											
77		Suggested	UCL to Use								
78	99% Chebyshev (Mean Sd) UCI 2480										
79											
08	Note: Suggestions regarding the selection of a 95%	UCL are pro	pyided to help the user to select the most appropriate 95% UCL.								
81	These recommendations are based upon the res	ults of the si	mulation studies summarized in Singh. Singh. and laci (2002)								
82	and Singh and Singh (2003). Howev	er, simulatio	ns results will not cover all Real World data sets.								
83	For additional insight	nt the user m	ay want to consult a statistician.								
84 05			.,								
85											
86	B(a)P										
8/	- (-).										
88		General	Statistics								
89	Total Number of Observations	18	Number of Distinct Observations	8							
90			Number of Missing Observations	0							
91	Minimum	0.05	Mean	1.014							
92	Maximum	10	Median	0.05							
93	SD	2.39	Std. Error of Mean	0.563							
94	Coefficient of Variation	2.357	Skewness	3.509							
95											
96		Normal (GOF Test								
97	Shaniro Wilk Test Statistic	0.467	Shaniro Wilk GOF Test								
98	5% Shapiro Wilk Critical Value 0.807 Data Not Normal at 5% Significance Lovel										
99	Lilliafore Test Statistic	0.343	Lilliefore GOF Teet								
100	5% Lilliefors Critical Value	0.040	Data Not Normal at 5% Significance Level								
101	Data Not	Normal at 5	% Significance Level								
102											
103	Δ	suming Nor	nal Distribution								
104	AS	suming NOR	ווסו טופווטעווטוו								

	A B C D E	F	G H I J K L								
105	95% Normal UCL		95% UCLs (Adjusted for Skewness)								
106	95% Student's-t UCL	1.994	95% Adjusted-CLT UCL (Chen-1995) 2.438								
107			95% Modified-t UCL (Johnson-1978) 2.072								
108		Commo									
109	A-D Test Statistic		Anderson-Darling Gamma GOE Test								
110	5% A-D Critical Value	0.825	Data Not Gamma Distributed at 5% Significance Level								
111	K-S Test Statistic	0.364	Kolmogrov-Smirnoff Gamma GOF Test								
112	5% K-S Critical Value	0.219	Data Not Gamma Distributed at 5% Significance Level								
113	Data Not Gam	ma Distribute	ed at 5% Significance Level								
114											
116		Gamma	Statistics								
117	k hat (MLE)	0.379	k star (bias corrected MLE) 0.353								
118	Theta hat (MLE)	2.672	Theta star (bias corrected MLE) 2.87								
119	nu hat (MLE)	13.66	nu star (bias corrected) 12.72								
120	MLE Mean (bias corrected)	1.014	MLE Sd (bias corrected) 1.706								
121			Approximate Chi Square Value (0.05) 5.704								
122	Adjusted Level of Significance	0.0357	Adjusted Chi Square Value 5.258								
123	3										
124	Assuming Gamma Distribution										
125	95% Approximate Gamma UCL (use when n>=50))	2.261	95% Adjusted Gamma UCL (use when n<50) 2.452								
126											
127	Z Lognormal GOF Test										
128	Shapiro Wilk Test Statistic	0.732	Shapiro Wilk Lognormal GOF Test								
129	5% Shapiro Wilk Critical Value	Data Not Lognormal at 5% Significance Level									
130	Lilliefors Test Statistic	0.37	Lilliefors Lognormal GOF Test								
131	5% Lilliefors Critical Value	0.209	Data Not Lognormal at 5% Significance Level								
132	Data Not L	ognormal at	t 5% Significance Level								
133			1 Otestieties								
134	Minimum of Loggod Data	Lognorma	Moon of logged Data 1 725								
135	Maximum of Logged Data	-2.990	SD of logged Data 1.793								
136		2.303	SD 01 logged Data 1.735								
137	Assi	imina Loanc	ormal Distribution								
138	95% H-UCL	4.887	90% Chebyshev (MVUE) UCL 1.829								
139	95% Chebyshev (MVUE) UCL	2.329	97.5% Chebyshev (MVUE) UCL 3.023								
140	99% Chebyshev (MVUE) UCL	4.385									
141	· · · · · · · · · · · · · · · ·										
142	Nonparame	etric Distribu	tion Free UCL Statistics								
144	Data do not f	ollow a Disc	ernible Distribution (0.05)								
145											
146	Nonpa	rametric Dis	tribution Free UCLs								
147	95% CLT UCL	1.941	95% Jackknife UCL 1.994								
148	95% Standard Bootstrap UCL	1.905	95% Bootstrap-t UCL 4.219								
149	95% Hall's Bootstrap UCL	4.823	95% Percentile Bootstrap UCL 2.092								
150	95% BCA Bootstrap UCL	2.636									
151	90% Chebyshev(Mean, Sd) UCL	2.704	95% Chebyshev(Mean, Sd) UCL 3.469								
152	97.5% Chebyshev(Mean, Sd) UCL	4.532	99% Chebyshev(Mean, Sd) UCL 6.619								
153											
154		Suggested	UCL to Use								
155	99% Chebyshev (Mean, Sd) UCL	6.619									
156											

	A	В	С	D	E	F	G	Н	_	J	K	L
157	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.											
158	These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002)											
159	and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.											
160	For additional insight the user may want to consult a statistician.											
161												

Detailed Site Investigation Report 242-244 Young Street, Waterloo NSW Report No. E23915.E02.Rev 0

Table T2 – Summary of Groundwater Analytical Results

	Heavy Metals					PAHs BTE		BTEX	TEX		TI	TRHs				PFAS									
Sample Identific	cation	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Total PAHs	Benzo(ɑ)pyrene	Naphthalene	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1	F2	F3	F4	VOCs Total	Phenols (Total)	PFOS	PFOA
BH1M-1		6	<0.1	3	85	3	<0.1	3	110	2	<0.2 *	<0.2 *	<0.5	<0.5	< 0.5	<1	<0.5	160	190	<1000 *	<1000 *	20	<0.05	NA	NA
BH9M-1		3	<0.1	<1	2	1	<0.1	<1	10	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<1	<0.5	<50	<60	<500	<500	<10	<0.05	NA	NA
BH10M-1		<1	<0.1	<1	65	2	<0.1	2	92	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<1	<0.5	<50	<60	<500	<500	<10	<0.05	NA	NA
Maximum Concer	ntration	6	<0.1	3	85	3	<0.1	3	110	2	<0.2	<0.1	<0.5	<0.5	<0.5	<1	<0.5	160	190	<1000	<1000	20	<0.05	NA	NA
95% UCL		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
											GILs														
	Fresh Water ⁴	24 (AsIII) 13 (AsV)	1.04 ^{H1}	4.50 ^{H1} (CR VI)	6.2 ^{H1}	40.61 ^{H1}	0.06 ³	52.76 ^{H1}	38.37 ^{H1}			16	950	180 ⁹	80 ⁹	350 ⁹	275 ⁹	50 ⁸	60 ⁸	500 ⁸	500 ⁸		320		
GIL	Recreational Water 6,7	100	20	500	20,000	100	10	200			0.01		1	800	300	60	00								
	Direct Contact ¹¹	1000	200	5,000	200,000	1,000	100	2,000			0.1		10	8,000	3,000	6,0	000								

Notes:

All values are $\mu g/L$ unless stated otherwise

NL = Not Limiting

NA = 'Not Analysed' i.e. the sample was not analysed.

ND = Not Detected - i.e. concentration below the laboratory PQL

F1 = (C6-C10) minus BTEX.

F2 = (>C10-C16) minus Naphthalene.

F3 = (>C16-C34).

F4 = (>C34-C40).

H1 = Modified hardness trigger values

1 = Values have been calculated using a hardness of 30mg/L CaCO3 refer to ANZECC & ARMCANZ (2000) for further guidance on recalculating for site-specific hardness

2 = Figure may not protect key species from chronic toxicity, refer to ANZAST (2018) for further guidance

3 = Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZAST (2018) for further guidance

4 = NEPM (2013) Groundwater Investigation Levels for fresh and marine water quality, based on ANZAST (2018).

5 = NEPC (2013) Table 1A(4) Groundwater HSL A&B and HSL D for vapour intrusion at the contaminant source depth ranges in sand 2m to <4m, as a conservative approach.

6 = NEPM (2013) Groundwater Investigation Levels for drinking water quality, based on Australian Drinking Water Guidelines (NHMRC 2017).

7 = Drinking Water value has been used multiplied by a factor of 10 to address the secondary contact recreation.

8 = In lack of a criteria the laboratory PQL has been used (DEC, 2007).

9 = Low reliability toxicity data, refer to ANZECC & ARMCANZ (2000)

10 = Maximum concentration derived from duplicate sample

11 = Australian Drinking Water Guidelines multiplied by 100

* = laboratory PQL has been raised due to interferences from the sample matrix

Highlighted indicates analyte concentration value exceeding the adopted human health criteria

Highlighted indicates analyte concentration value exceeding the adopted recreational and direct criteria Highlighted indicates criteria exceeded

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

APPENDIX A Proposed Development Plans

YOUNG STREET

STRATEGY D - GROUND LEVEL

YOUNG STREET

STRATEGY D - LEVELS 1-3

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

APPENDIX B Groundwater Bore Search

current site: GW111959

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

APPENDIX C Site Photographs

Photograph 1: Commercial building (film school) located at 242-244 Young Street, Waterloo (the site), looking south-east.

Photograph 2: Manufacturing workshop located at the site, looking south-west.

Photograph 3: Commercial building (offices) located at the site, north.

Photograph 4: Interior of the manufacturing workshop located at the site.

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

APPENDIX D Historical Property Titles Search

ABN: 36 092 724 251 Ph: 02 9099 7400 Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

<u>NSW LRS</u> (Formerly LPI)

<u>Report</u>

Sydney

Address: 242 & 244 – 258 Young Street, Waterloo

Description: - Lot 1 D.P. 84655 & Lots A & B D.P. 161650

As regards Lot 1 D.P. 84655

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	<u>Reference to Title at</u> Acquisition and sale
08.08.1912 (1912 to 1940)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited	Book 976 No. 257
18.03.1940 (1940 to 1968)	Gordon Marr & Sons Pty. Limited	Book 1867 No. 316 Now Vol 5239 Fol 116
01.11.1968 (1968 to 1986)	P. Rowe Pty Limited	Vol 5239 Fol 116
27.05.1986 (1986 to 1986)	Leda Holdings Pty Limited	Vol 5239 Fol 116
03.11.1986 (1986 to 1991)	Baese Pty. Limited	Vol 5239 Fol 116 Now 1/84655
29.01.1991 (1991 to 1998)	Tridu Pty. Limited	1/84655
20.05.1998 (1998 to 2013)	Coates Signco Manufacturing Pty Limited Now Alan Coates Pty Limited	1/84655
04.01.2013 (2013 to Date)	# International Screen Academy Property Pty Ltd	1/84655

Denotes Current Registered Proprietor

Easements: -

• 28.07.1986 (D.P. 638902) – Easement for Support

Leases: -

- 01.11.1968 (L301856) Gordon Marr & Sons Proprietary Limited expired 17.05.1979
- Numerious Leases were found from 29.01.1991 to 30.11.2010 that have since expired due to effluxion of time, or have been surrendered these have not been investigated
- 16.05.2013 (AH734086) International Screen Academy Property Pty Limited of 242 Young Street, Waterloo expires 17.12.2015
 26.07.2016 (AK625515) expiry date now 31.12.2017

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot A D.P. 161650

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
08.08.1912 (1912 to 1956)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited	Book 976 No. 257
10.05.1956 (1956 to 1968)	Gordon Marr & Sons Pty. Limited	Book 2387 No. 363 Now Vol 8211 Fol 238
01.11.1968 (1968 to 1982)	P. Rowe Pty Limited	Vol 8211 Fol 238
16.03.1982 (1982 to 1989)	Perpetual Trustee Company Limited	Vol 8211 Fol 238
16.03.1989 (1989 to 1995)	John Malcolm Sandilands Beverley Ann Sandilands	Vol 8211 Fol 238 Now A/161650
02.03.1995 (1995 to 1998)	Beverley Ann Sandilands	A/161650
23.04.1998 (1998 to Date)	# Charvic Pty Limited	A/161650

Denotes Current Registered Proprietor

Easements: -

- 28.07.1986 (D.P. 638902) Easement for Support
- 28.07.1986 (D.P. 638902) Easement for Maintenance of Gutter

Leases: -

- 01.11.1968 (L301856) Gordon Marr & Sons Proprietary Limited expired 17.05.1979
- 01.07.1982 (T72760) P. Rowe Pty Limited expired 15.09.1988
- 15.09.1988 (X837002) P. Rowe Fabrics Pty. Limited surrendered 06.05.1994
- 06.05.1994 (U241772) expired due to effluxion of time, or has been surrendered this has not been investigated
- 20.12.2007 (AD653553) expired due to effluxion of time, or has been surrendered this has not been investigated
- 19.05.2017 (AM405465) Paramount Property Group Pty Limited of Factory, 244 Young Street, Waterloo together with 38 on-site parking spaces numbered 1–38. expires 01.04.2002 option of renewal 2 years

ABN: 36 092 724 251 Ph: 02 9099 7400 Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot B D.P. 161650

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
08.08.1912 (1912 to 1966)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited	Book 976 No. 257 Now Vol 7448 Fol 29
28.01.1966 (1966 to 1982)	P. Rowe Pty Limited	Vol 7448 Fol 29
16.03.1982 (1982 to 1989)	Perpetual Trustee Company Limited	Vol 7448 Fol 29
16.03.1989 (1989 to 1995)	John Malcolm Sandilands Beverley Ann Sandilands	Vol 7448 Fol 29 Now B/161650
02.03.1995 (1995 to 1998)	Beverley Ann Sandilands	B/161650
23.04.1998 (1998 to Date)	# Charvic Pty Limited	B/161650

Denotes Current Registered Proprietor

Easements: -

- 01.04.2009 (D.P. 1136961) Easement for Electricity and Other Purposes 3.365 metre(s) wide
- 01.04.2009 (D.P. 1136961) Right of Carriageway 6.8 metre(s) wide

Leases: -

- 01.07.1982 (T72760) P. Rowe Pty Limited expired 15.09.1988
- 15.09.1988 (X837002) P. Rowe Fabrics Pty. Limited surrendered 06.05.1994
- 06.05.1994 (U241772) expired due to effluxion of time, or has been surrendered this has not been investigated
- 20.12.2007 (AD653553) expired due to effluxion of time, or has been surrendered this has not been investigated
- 19.05.2017 (AM405465) Paramount Property Group Pty Limited of Factory, 244 Young Street, Waterloo together with 38 on-site parking spaces numbered 1–38. expires 01.04.2002 option of renewal 2 years

Copyright © Crown in right of New South Wales, 2017

This information is provided as a searching aid only. Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

DP 84655 CONVERSION TABLE ADDED IN REGISTRAR GENERAL'S DEPARTMENT Muny of Waterloo. DP 59655 PLAN P.A.34655 6 FEET INCHES RETRES 0.032 0.051 0.470 3.620 3.658 3.664 3.683 3.695 5.023 1 1/4 of part of J. T. Campbell's 185ac. Grant 6 1/2 1 Parish of Alexandria County of Cumberland 12,002 Scale: 40 feet to one inch 15.240 16,972 16.504 17.856 20.117 23.470 38.183 M. M 48.597 50.102 MEEVOY ST 66 Jact wide Not Aliod AC RD P SQ M 1414 - 1 1 1/2 1050 Aucher Pty Ltd. (Owners) AC RD P HA 26-30 Clarence St, Sydney. de Haviland Aircraft Pty Ltd. G. I 5 19. 6. 19 30 Occupiers 185 - -74.87 Арр? Nº 19363 Q. IN LTO Ir. Itep. 277 + 18 20 PLAN AMENDED James Hunter & Sons Ply Ltd. (Own & Nocci) Hunter St HUNTER Waterlao. And I make this salarnin declaration ing the same to be true and by virtue of the provisions of the Oaths Subscribed and declared before me, H. D. bowdery. at Sydney this 27th day of September 1940. John Haw Rey Surveyor registered under the Surveyors'Act, 1929 Datum line of Agimuth A-B. lezalier 6. 31/1/40 AMENDMENTS AND/OR ADDITIONS MADE ON PLAN IN THE LAND TITLES OFFICE This negative is a photograph made as a permanent record of a document in the custody of the Registrar General this day. 20th June, 1990 10 20 30 40 50 60 70 Table of mm 110 120 130 140

* 2

InfoTrack

н

뜅

/Seq:1

10:47

/Prt:13-Jul-2018

/Pgs:ALL

М

/Sts:OK.

/Rev:02-Aug-1992

рн

Req:R915354 /Doc:DP 0084655 Ref:waterloo /Src:M InfoTrack

FOLIO: 1/84655

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 5239 FOL 116

Recorded	Number	Type of Instrument	C.T. Issue
2/9/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
22/5/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
19/11/1990	Z340072	CAVEAT	
28/11/1990	DP644174	DEPOSITED PLAN	EDITION 1
5/12/1990	Z370018	CAVEAT	
22/1/1991 22/1/1991 22/1/1991 22/1/1991	Z438284 Z438285 Z438286 Z438287	WITHDRAWAL OF CAVEAT WITHDRAWAL OF CAVEAT DISCHARGE OF MORTGAGE DISCHARGE OF MORTGAGE	а
22/1/1991 29/1/1991	Z438288 Z438289	DISCHARGE OF MORTGAGE	EDITION 2
29/1/1991 29/1/1991	Z438290 Z445561	MORTGAGE LEASE	EDITION 3
3/2/1994	1995265	VARIATION OF LEASE	EDITION 4
28/2/1995	051110	LEASE	EDITION 5
4/9/1997		AMENDMENT: LOCAL GOVT AREA	
20/5/1998	3998514	DISCHARGE OF MORTGAGE	
20/5/1998	3998516	MORTGAGE	EDITION 6
14/3/2004	AA472866	DEPARTMENTAL DEALING	
31/10/2005	AB876363	LEASE	EDITION 7
30/11/2010 30/11/2010	AF717501 AF717502	CHANGE OF NAME LEASE	
30/11/2010 30/11/2010	AF717503 AF911416	LEASE DEPARTMENTAL DEALING	EDITION 8 EDITION 9

END OF PAGE 1 - CONTINUED OVER

waterloo

PRINTED ON 3/7/2018

FOLIO: 1/84655

PAGE 2

	Recorded	Number	Type of Instrument	C.T. Issue
	24/8/2012	AH195909	CAVEAT	
3	1/10/2012	AH310950	CAVEAT	
1	8/12/2012	AH446824	WITHDRAWAL OF CAVEAT	
1	8/12/2012	AH446825	WITHDRAWAL OF CAVEAT	
1	8/12/2012	AH446826	CAVEAT	
	4/1/2013	AH466173	DISCHARGE OF MORTGAGE	
	4/1/2013	AH466174	REQUEST	
	4/1/2013	AH466175	TRANSFER	EDITION 10
	16/5/2013	AH734086	LEASE	EDITION 11
	26/8/2014	AI844090	VARIATION OF LEASE	
	26/7/2016	AK625515	VARIATION OF LEASE	

*** END OF SEARCH ***

waterloo

PRINTED ON 3/7/2018

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Copyright @ Office of the Registrar-General 2018

Received: 03/07/2018 18:13:38

5

Req:R914900 Ref:waterlo	Doc:DL Z438289 /Rev:09-J	ul-2010 /Sts:OK.SC /Pgs:AI	L /Prt:13-Jul-2018 10:18 /Sec 438289
C. HULL	STOO OFFICE OF STATE REV (N.G.W. TREASUR (N.G.W. TREASUR (N.G.	TRANSFER REAL PROPERTY ACT, 1900 nstructions for Completion on back of form)	1 3 6 "7 X \$ 47 R1 3
	Torrans Title Reference	If Part Only, Delete Whole and Give Details	Location
DESCRIPTION OF LAND Note (a)		WHOLE	
	Folio Identifier 1/84655		Waterloo
TRANSFEROR Note (b)	BAESE PTY. LIMITED		
	(the aboveramed TRANSEEROR) bereby asknowledges	receipt of the consideration of \$ 1, 700, 000, 00	
ESTATE Note (c)	and transfers an estate in fee simple	receipt of the consideration of \$ 1,700,000.00	
12	in the land above described to the TRANSFEREE		
TRANSFEREE Note (b)	TRIDU PTY. LIMITED, a duly inc. 3 Smail Street, Broadway	orporated company of Suite 628, 6	office use only
TENANCY		· · · · · ·	
Note (d)	as joint tenants/tenants in common	DP638902 Eacoment for support	I
ENCUMBRANCES	2	3	
	- 3.11		
	DATE OF TRANSFER 6th December 1	290	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	We hereby certify this dealing to be correct for the purpo	oses of the Real Property Act, 1900	V I
TRANSFER	Signed in my presence by the transferor who is personal THE COMMON SEAL of <u>BAESE PTY.</u> LIMITED was hereunto affixed by authority of softwork of Directors and in the presence of: Name of Wilness (BLOCK LETTERS)	ly known to me	Director
Secretary/dees and occupation of Wilness Signed in my presence by the transferee who is personally known to me THE COMMON SEAL of TRIDU PTY. LIMITED was hereunto affixed by authority of active based of Directors and in the presence of:) Director			
	Secretaryddroso and occupation of Witness		Signature of Trensferee
TO BE COMPLETED BY LODGING PARTY	LODGED BY Sestpac Banking C	Corporation CT OTHER	CATION OF DOCUMENTS
Notes (g) and (h)	SYDNEY 2000, PHONE: 26	60-6750 WX, DM, Her	ewith,
	DELIVERY BOX No. 37Y	< / In F	I.G.O. with
	Ref.: 05202/ 9(0050 Delivery Box Number	Pro	duced by
OFFICE USE ONLY	Checked Passed REGISTERED 1	9 Secondary Directions	2HO R
	Sigled Extra Fee 29	JAN 1991 Delivery Directions	2.938288
-			

Reg:R91 Ref:wat	Identified (Instructions for filling out	'Rev:22-May-1	998 /Sts:NO.OK / TRANS New South Real Property	Pgs:ALL /P FER Wales Act 1900	999851 399851	18 /Seq:1 of 1 5 S
	this form are available from the Land Titles Office	Office of State	Revenue use only	<u>~</u>		
			¢2* 00	20	2-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	1 869020
			111	I dud	15 "A"5"N	ł
(A)	LAND TRANSFERRED If appropriate, specify the share or part transferred.	1/846	55		s.	
(B)	LODGED BY	LTO Box	Name, Address or NATIONA National 255 Geo 237 - 111 Reference (15 chara	DX and Teler L AUSTRALI Australia Ba rge Street, S 1 FAX 23 cter maximum	ohone A BANK LIMIJED mk Limited Sydney 7 - 1284	98183802
(C)	TRANSFEROR TR	IDU PTY LI	MITED ACN 0	01 958 8	54	****
(D)	acknowledges receipt of the c	onsideration of	\$1,630,000	.00		
(E)	Encumbrances (if applicable):	1		state in Jee sin	nple.	*****
(F) (G)	TRANSFEREE T (s713 LGA) TW (Sheriff)	COATES S ACN 067 TENANCY:	SIGNCO MANUF 970 807	ACTURING	PTY LIMITED	
(11)	We certify this dealing correct Signed in my presence by the	for the purposes transferor who is	of the Real Property personally known to	Act 1900. D	Common 2	·98 ·
	Signature o	f Witness		(PŢ A.G	TY. LIMITED	ickenney
91	Name of Witness (BI	OCK LETTERS	5)		Sen fin	2
3	Address of	Witness			Signature of Trans	Steror
S	Signed in my presence by the	transferee who i	s personally known	to me.	\frown	
ľ	Signature of	Witness	2010-01-01-01-01-01-01-01-01-01-01-01-01-	S	H)	9
7.	Name of Witness (BL	OCK LETTERS)	HW EDW	ARDSignature of Trens Solicitor	for Transferre
•	Address of V	Witness	uneren under die	If signed on conveyancer	the transferce's behalf by , show the signatory's ful	a solicitor or licensed l name in block letters.
			Page 1 of		Checked by (LTC	D use)

Req:R918916 /Doc:DL AF717501 /Rev:06-Dec-2010 /Sts:NO.0K /Pgs:ALL /Prt:13-Jul-2018 15:56 /Seq:1 of 1 Ref:waterloo /Src:M

For Lice Lice Firr	m: 10CN ence: 01-05-069- ensee: LEAP Lega n name: Clinch Long Limited PRIVACY NOTE: required by this for	I Software Pty Lir g Letherbarrow Pt Section 31B of the	CHANGE OF N hited New South Wales Real Property Act 190 e Real Property Act 1900 (RP Act) authori. Histoment and maintenance of the Real Property Act Papieter Section 968 PB Act regulator)nal	
(• `	Register is made	available to any	erson for search upon payment of a fee, if any.	ines that the	1
(A)	LANU	1/84655			
(B)	REGISTERED DEALING	Number	Torrens Title		
(C)	LODGED BY	Delivery Box 479P	Name, Address or DX and Telephone LLPN: 12353 U Clinch Long Letherbarrow Pty Limited DX 13090 SYDNEY MARKET STREET Tel: 9279 4888	CODE	-8-9-10
			Reference: DJW:JAQ:100030	CN	# 7
(D)	REGISTERED PROPRIETOR	COATES \$1	GNCO MANUFACTURING PTY LIMITED ACN 067 970 807	1,100	2110
(E)	NEW NAME	ALAN COA	гез ртү limited acn 067 970 807 💋		rched.
(F)	The abovenamed re	egistered proprie	tor of the land referred to above applies to have his/her new name recorded in the		200
	Register in respect	of that land.		7	234
(G)	STATUTORY DECL	ARATION BY TH	APPLICANT		ive
	I Alan Bernard Coa	ates,			ა
	solemnly and since	rely declare that		-	S
1.	I am the Sole Director/Secretary of the Registered Proprietor;				

(G) STATUTORY DECLARATION BY THE APPLICANT

- 1. 1 am the Sole Director/Secretary of the Registered Proprietor;
- 2. On 30 June 2008 Coates Signco Manufacturing Pty Limited ACN 067 970 807 changed its name to Alan Coates Pty

Limited ACN 067 970 807.

I make this solemn declaration conscientiously believing the same to be true and by virtue of the provisions of the Oaths Act 1900. and I certify this application to be correct for the purposes of the Real Property Act 1900.

Made and subscribed at X WATERLOO N.S.W

ON X JOHL JUSE 2010

Signature of witness: X

B. MELLANDER Name of witness: 🗙

Address of witness: × 12/25 HARVEY ST., PYRMONT 2009

Qualification of witness: X JP 168308

in the State of New South Wales in the presence ofØ

Signature of Applicat

ALL HANDWRITING MUST BE IN BLOCK CAPITALS

Page 1 of 1_

SERVICES

LAND

	SI	EARCH DATE	TIME	EDITION NO	DATE
	1:	3/7/2018	10:46 AM	11	 16/5/2013
LAN	ID				
FIF	I I IN DEPC LOCAL GOVE PARISH OF TITLE DIAG RST SCHEDULI	SITED PLAN 84 RNMENT AREA 9 ALEXANDRIA RAM DP84655 E	4655 SYDNEY COUNTY OF CUMBERLAND		Ř
INT	TERNATIONAL	SCREEN ACAD	EMY PROPERTY PTY LTD	(Т	AH466175)
SEC	COND SCHEDU	LE (7 NOTIFIC	CATIONS)		
SE(COND SCHEDU	LE (7 NOTIFIC	CATIONS)		
SE(1 2	COND SCHEDU RESERVATI DP638902	LE (7 NOTIFIC CONS AND COND EASEMENT FO	CATIONS) ITIONS IN THE CROWN G R SUPPORT AFFECTING T	RANT(S)	HE LAND
SE(2 3	COND SCHEDU RESERVATI DP638902 DP638902	LE (7 NOTIFIC ONS AND COND EASEMENT FO WITHIN DESC EASEMENT FO DESCRIBED	CATIONS) ITIONS IN THE CROWN G R SUPPORT AFFECTING T RIBED SHOWN SO BURDEN R SUPPORT APPURTENANT	RANT(S) HE PART OF T ED IN DP63890 TO THE LAND	HE LAND 02 ABOVE
SE(2 3 4	COND SCHEDU RESERVATI DP638902 DP638902 DP638902	LE (7 NOTIFIC ONS AND COND EASEMENT FO WITHIN DESC EASEMENT FO DESCRIBED EASEMENT FO	CATIONS) ITIONS IN THE CROWN GI R SUPPORT AFFECTING T RIBED SHOWN SO BURDEN R SUPPORT APPURTENANT R MAINTENANCE OF GUTT	RANT(S) HE PART OF T. ED IN DP63890 TO THE LAND ER APPURTENAI	HE LAND 02 ABOVE NT TO
SE(1 2 3 4 5	COND SCHEDU RESERVATI DP638902 DP638902 DP638902 DP638902 DP644174	LE (7 NOTIFIC ONS AND COND EASEMENT FO WITHIN DESC EASEMENT FO DESCRIBED EASEMENT FO THE LAND ABC EASEMENT FO	CATIONS) ITIONS IN THE CROWN GI R SUPPORT AFFECTING T RIBED SHOWN SO BURDEN R SUPPORT APPURTENANT R MAINTENANCE OF GUTT OVE DESCRIBED R SUPPORT APPURTENANT	RANT(S) HE PART OF T. ED IN DP63890 TO THE LAND ER APPURTENAI TO THE LAND	HE LAND 02 ABOVE NT TO ABOVE
SE(1 2 3 4 5 6	COND SCHEDU RESERVATI DP638902 DP638902 DP638902 DP644174 DP644174	LE (7 NOTIFIC CONS AND COND EASEMENT FO WITHIN DESC EASEMENT FO DESCRIBED EASEMENT FO DESCRIBED EASEMENT FO DESCRIBED	CATIONS) ITIONS IN THE CROWN GI R SUPPORT AFFECTING T RIBED SHOWN SO BURDEN R SUPPORT APPURTENANT R MAINTENANCE OF GUTT R SUPPORT APPURTENANT R MAINTENANCE OF GUTTH	RANT (S) HE PART OF T. ED IN DP63890 TO THE LAND ER APPURTENAI TO THE LAND ER AND FLASHI	HE LAND 02 ABOVE NT TO ABOVE ING
SEC 1 2 3 4 5 6 7	COND SCHEDU RESERVATI DP638902 DP638902 DP638902 DP644174 DP644174 AH734086	LE (7 NOTIFIC ONS AND COND EASEMENT FO WITHIN DESC EASEMENT FO DESCRIBED EASEMENT FO DESCRIBED EASEMENT FO DESCRIBED EASEMENT FO APPURTENANT LEASE TO IN:	CATIONS) ITIONS IN THE CROWN GU R SUPPORT AFFECTING T RIBED SHOWN SO BURDENN R SUPPORT APPURTENANT OVE DESCRIBED R SUPPORT APPURTENANT R MAINTENANCE OF GUTTH TO THE LAND ABOVE DES IERNATIONAL SCREEN ACT	RANT(S) HE PART OF T. ED IN DP63899 TO THE LAND ER APPURTENAI TO THE LAND ER AND FLASH SCRIBED ADEMY PTY LIN	HE LAND 02 ABOVE NT TO ABOVE ING MITED OF

NOTATIONS ------

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

waterloo

PRINTED ON 13/7/2018

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. Information approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 968(2) of the Real Property Act 1900.

FOLIO: A/161650

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 8211 FOL 238

Recorded	Number	Type of Instrument	C.T. Issue
31/8/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
11/10/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
<mark>6/5/1994</mark> 6/5/1994	U241 77 1 U241772	SURRENDER OF LEASE LEASE	EDITION 1
2/3/1995 2/3/1995 2/3/1995	056952 056953 056954	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 2
<mark>3/9/1997</mark>		AMENDMENT: LOCAL GOVT AREA	
23/4/1998 23/4/1998	3937680 3937682	DISCHARGE OF MORTGAGE	EDITION 3
14/3/2004	AA472866	DEPARTMENTAL DEALING	
20/12/2007	AD653553	LEASE	EDITION 4
22/12/2008	AE406620	CAVEAT	
<mark>3/4/2009</mark>	AE595205	WITHDRAWAL OF CAVEAT	
5/7 <mark>/</mark> 2011	AG347378	VARIATION OF LEASE	
4/9/2012 4/9/2012	AH212838 AH212839	CHANGE OF NAME VARIATION OF LEASE	
18/6/2015	AJ575230	VARIATION OF LEASE	
19/5/2017 19/5/2017	AM405464 AM405465	SURRENDER OF LEASE	EDITION 5
1/6/2017	AM442236	CAVEAT	
1 <mark>5/6/</mark> 2017	AM477806	CAVEAT	

END OF PAGE 1 - CONTINUED OVER

waterloo

PRINTED ON 3/7/2018

FOLIO: A/161650

PAGE 2

Recorded	Number	Type of Instrument	C.T. Issue
27/7/2017	AM596514	WITHDRAWAL OF CAVEAT	
			20 - D

*** END OF SEARCH ***

waterloo

PRINTED ON 3/7/2018

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Copyright @ Office of the Registrar-General 2018

Received: 03/07/2018 18:13:38

Req:R9	14922 /Doc:DL 0056953 /Rev:1	0-Mar-2010 /Sts:OK.SC /Pgs:ALL /Prt:13-Jul-2018 10:19 /Seq:1 of 1
Ref:wa	terloo /Src:M RP13	
		Office of 140B.
(A)	LAND TRANSFERRED	
	Show no more than 20 References to Title. If appropriate, specify the share transferred.	VOLUME 8211 FOLIO 238 and Now being A/161650 VOLUME 7448 FOLIO 29 and B/161650
(B)	LODGED BY	LT.O. Box Name, Address or DX and Telephone Address or DX and Telephone National Australia Bank House 255 George Street, Sydney 237 - 1111 FAX 237 - 1284 REFERENCE (max. 45 Aaracters): 7 × 37 0 2
(C)	TRANSFEROR	JOHN MALCOLM SANDILANDS
(D) (E) (F)	acknowledges receipt of the consideration and as regards the land specified above subject to the following ENCUMBRANC TRANSFEREE	on of <u>Pursuant</u> to Orders made on 19 January 1994 by the Family. Court of Australia transfers to the transferee an estate in fee simple ES 1. U241772 2 3.
(G)	В	EVERLEY ANN SANDILANDS
(H) 	We certify this dealing correct for the pull Signed in my presence by the transferor w Granner Difference Signature of Witness JOANNA BJODE Name of Witness (BLOCK LETTI HENCLE TTA S Address of Witness	The is personally known to me. Who is personally known to me. WHAVERLEY WAVERLEY Who is personally known to me.
		no is personally known to me.
2014	Signature of Witness	A
	Name of Witness (BLOCK LETTE	
N ^E	Address of Witness	Stuart Grant Fow Stuars Gransferce
øæ> (NS	TRUCTIONS FOR FILLING OUT THIS FORM AR	Solicitor acting for E AVAILABLE FROM THE LAND TITLES OFFICE CHECKED BY (office use only)

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: A/161650

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
13/7/2018	10:46 AM	5	19/5/2017

LAND -----

LOT A IN DEPOSITED PLAN 161650 AT WATERLOO LOCAL GOVERNMENT AREA SYDNEY PARISH OF ALEXANDRIA COUNTY OF CUMBERLAND TITLE DIAGRAM DP161650

FIRST SCHEDULE

CHARVIC PTY LIMITED

(T 3937682)

SECOND SCHEDULE (5 NOTIFICATIONS)

1	RESERVATI	ONS AND CONDITIONS IN THE CROWN GRANT(S)			
2	DP638902	EASEMENT FOR SUPPORT AFFECTING THE PART OF THE LAND			
		SO BURDENED IN DP638902			
3	DP638902	EASEMENT FOR SUPPORT APPURTENANT TO THE LAND ABOVE			
		DESCRIBED			
4	DP638902	EASEMENT FOR MAINTENANCE OF GUTTER AFFECTING THE			
		PART OF THE LAND SHOWN SO BURDENED IN DP638902			
5	AM405465	LEASE TO PARAMOUNT PROPERTY GROUP PTY LIMITED OF			
		FACTORY, 244 YOUNG STREET, WATERLOO TOGETHER WITH 38			
		ON-SITE PARKING SPACES NUMBERED 1-38. EXPIRES:			
1/4/2020. OPTION OF RENEWAL: 2 YEARS.					
AM442236 CAVEAT AFFECTING LEASE AM405465 CAVEAT BY HANSON					
	PRECAST PTY LTD				

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

waterloo

PRINTED ON 13/7/2018

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title, Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrer General in accordance with Section 968(2) of the Real Property Act 1900.

FOLIO: B/161650

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 7448 FOL 29

Recorded	Number	Type of Instrument	C.T. Issue
29/7/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
17/1/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
1/7/1992	E577823	DEPARTMENTAL DEALING	
6/5/1994 6/5/1994	U241771 U241772	SURRENDER OF LEASE LEASE	EDITION 1
2/3/1995 2/3/1995 2/3/1995	056952 056953 056954	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 2
3/9/1997		AMENDMENT: LOCAL GOVT AREA	
23/4/1998 23/4/1998	3937681 3937682	DISCHARGE OF MORTGAGE	EDITION 3
14/3/2004	AA472866	DEPARTMENTAL DEALING	
20/12/2007	AD653553	LEASE	EDITION 4
22/12/2008	AE406620	CAVEAT	
1/4/2009	DP1136961	DEPOSITED PLAN	EDITION 5
3/4/2009	AE 595205	WITHDRAWAL OF CAVEAT	
5/7/2011	AG347378	VARIATION OF LEASE	
4/9/2012 4/9/2012	AH212838 AH212839	CHANGE OF NAME VARIATION OF LEASE	
18/6/2015	AJ575230	VARIATION OF LEASE	
19/5/2017 19/5/2017	AM405464 AM405465	SURRENDER OF LEASE	EDITION 6

END OF PAGE 1 - CONTINUED OVER

waterloo

PRINTED ON 3/7/2018

SEARCH DATE ------3/7/2018 6:13PM

FOLIO: B/161650

 $\mathbf{D}^{\mathbf{a}}$

PAGE 2

Recorded	Number	Type of Instrument	C.T. Issue
1/6/2017	AM442236	CAVEAT	
15/6/2017	AM477806	CAVEAT	
27/7/2017	AM596514	WITHDRAWAL OF CAVEAT	

*** END OF SEARCH ***

waterloo

PRINTED ON 3/7/2018

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Copyright @ Office of the Registrar-General 2018

Received: 03/07/2018 18:13:38

Req:R9	14922 /Doc:DL 0056953 /Rev:1	0-Mar-2010 /Sts:OK.SC /Pgs:ALL /Prt:13-Jul-2018 10:19 /Seq:1 of 1
Ref:wa	terloo /Src:M RP13	
		Office of 140B
(A)	LAND TRANSFERRED	
	Show no more than 20 References to Title. If appropriate, specify the share transferred.	VOLUME 8211 FOLIO 238 and Now being A/161650 VOLUME 7448 FOLIO 29 and B/161650
(B)	LODGED BY	LT.O. Box Name, Address or DX and Telephone AUSTRALIA BANK LIMITED AGA National Australia Bank House 255 George Street, Sydney 237 - 1111 FAX 237 - 1284 REFERENCE (max. 45 Auracters): T × 37 ° 2
(C)	TRANSFEROR	JOHN MALCOLM SANDILANDS
(D) (E)	acknowledges receipt of the consideration and as regards the land specified above is subject to the following ENCUMBRANC	on of pursuant to Orders made on 19 January 1994 by the Family Court of Australia mansfers to the transferee an estate in fee simple TES 1. U241772 2
(F) (G)	TRANSFEREE B	EVERLEY ANN SANDILANDS
(H)	We certify this dealing correct for the pur Signed in my presence by the transferor v Joanna Difference Signature of Witness JOANNA BUODE Name of Witness (BLOCK LETTE HENCLE TTA S Address of Witness Signature of Witness Name of Witness (BLOCK LETTER Name of Witness (BLOCK LETTER Name of Witness (BLOCK LETTER	Transferor The is personally known to me.
ing in:	STRUCTIONS FOR FILLING OUT THIS FORM AR	Solicitor acting for E AVAILABLE FROM THE LAND TITLES OFFICE CHECKED BY (office use only)

FOLIO: B/161650 -----

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
13/7/2018	10:46 AM	6	19/5/2017

LAND

LOT B IN DEPOSITED PLAN 161650 AT WATERLOO LOCAL GOVERNMENT AREA SYDNEY PARISH OF ALEXANDRIA COUNTY OF CUMBERLAND TITLE DIAGRAM DP161650

FIRST SCHEDULE

------CHARVIC PTY LIMITED

(T 3937682)

SECOND SCHEDULE (4 NOTIFICATIONS)

1	DECEDUATIONC	AND	CONDITITONIC	The mean	CDOLINI	CDANE (C)
1	RESERVATIONS	AND	CONDITIONS	TN	CROWN	GRANT(S)

	2	DP1136961	EASEMENT FOR ELECTRICITY AND OTHER PURPOSES 3.365
			METRE (S) WIDE AFFECTING THE PART (S) SHOWN SO BURDENED
			IN DP1136961
	3	DP1136961	RIGHT OF CARRIAGEWAY 6.8 METRE(S) WIDE AFFECTING THE
			PART(S) SHOWN SO BURDENED IN DP1136961
	4	AM405465	LEASE TO PARAMOUNT PROPERTY GROUP PTY LIMITED OF
			FACTORY, 244 YOUNG STREET, WATERLOO TOGETHER WITH 38
			ON-SITE PARKING SPACES NUMBERED 1-38. EXPIRES:
			1/4/2020. OPTION OF RENEWAL: 2 YEARS.
*		AM4422	236 CAVEAT AFFECTING LEASE AM405465 CAVEAT BY HANSON
			PRECAST PTY LTD

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

waterloo

PRINTED ON 13/7/2018

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 968(2) of the Real Property Act 1900.

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

> APPENDIX E Borehole Logs

		(R			Droject	Dete		0 100	octigation	E	BORE	HOLE:	BH1M
	e			str	Geotechnic	Location	242-2	244 Yo	ung (Street, Waterloo NSW			Sheet	1 OF 1
						Position Job No.	Refei E239	to Fig 15	jure 2	2 Contractor HartGeo Pty Lt	d		Date Started Date Complete	15/8/18 d 15/8/18
						Client	Benn	et Mur	ada /	Architects Drill Rig Ute-mounted S	olid Fli	ight Auger	Logged DR	Date: 15/8/18
F								1		Inclination -90°			Спескеа СS	Date: 21/8/18
\vdash	Z	z	Dril	ling		Sampling			OL	Field Material Desc	ription	ו <u>כ</u> ו כ	PIEZOMETER D	DETAILS
METHOD		RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVEREI	GRAPHIC LOG	USCS SYMB	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION			
14	5		-	0 —	0.12	BH1M 0.3-0.4 ES			-	CONCRETE: 120mm thick.				- Gatic Cover
				-		QD1 QT1 PID = 1.9 ppm BH1M_0.5-0.6 ES PID = 5.6 ppm		\bigotimes	-	FILL: Gravelly Clayey SAND; medium grained, light brown/orange/grey, with low to medium plasticity clay and fine, sub-angular to angular gravels, weak hydrocarbon odour.				- Cuttings
				- 1—	0.80			$\langle \times \rangle$	S	SAND; fine grained, light grey, no odour.	м		-	- 50 mm uPVC Casing Bentonite
				-		PID = 0.3 ppm								
Ľ	_	-		2	2.20	BH1M_2.4-2.5 ES				From 2.2m, brown.				-
					3.00	PID = 0.7 ppm				From 3.0m, dark brown, strong hydrocarbon odour.	M - W			-
			\triangleright	-		BH1M_3.4-3.5 ES PID = 23.1 ppm								- Sand - 50 mm uPVC Screen
15				4							w			-
: EIA 1.03 2014-07⊣				- -	5.00									
. 1.03 2014-07-05 Pr				-						Hole Terminated at 5.00 m Target Depth Reached. Borehole Converted into Monitoring Well.				
iol - DGD Lib: ElA				6—										-
el Lab and In Situ Tr				-										
53 10.0.000 Datg.				7										-
21/08/2018 16.														-
GPJ < <drawingfilt< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawingfilt<>				-										
3 E23915 LOGS.				- 9—										-
IS AU BOREHOLE				-										
A LIB 1.03.GLB Log	This borehole log should be read in conjunction with El Australia's accompanying standard notes.													

Г

٦

mination F	Remediation	Geotechnical	Project Location Position Job No. Client	Deta 242-2 Refe E239 Benr	iled Sil 244 Yo r to Fig 915 net Mui	te Invo oung S gure 2 rada A	estigation Street, Waterloo NSW	Contractor Drill Rig Inclination	N/A Hand Auger -90°		Sheet Date Started Date Completed Logged DR Checked CS	1 OF 1 15/8/18 15/8/18 Date: 15/8/18 Date: 21/8/18
Dri	lling		Sampling					Fie	Id Material Des	cription		
SISTANCE	oTH itres)		SAMPLE OR FIELD TEST	COVERED	APHIC	CS SYMBOL	SOIL/ROCK M/	ATERIAL DESCR	RIPTION	ISTURE NDITION NSISTENCY VSITY	STRUCTURE ADDITION/ OBSERVATIO	AND AL DNS

			Drii	ling		Sampling				Field Material Desci	iptic	n	
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
Ī	DT			0.0 —	0 10			а. 4 - 4 - 4 - 4 - 4 - 5	-	CONCRETE: 100mm thick.	-		CONCRETE HARDSTAND
			₽	-	0.20	BH2_0.1-0.2 ES PID = 2.2 ppm			-	FILL: SAND: fine to medium grained, dark brown, with organics, slight hydrocarbon odour.		-	FILL
	AD/T	-	GWI	-	0.20			• • • • • • • • • • • • • • • • • • • •	-	SANDSTONE; fine grained, yellow, with coarse, sub-angular to angular sandstone fragments, no odour.	м	-	BEDROCK
				-	0 40	BH2_0.3-0.4 ES PID = 1.4 ppm							
					0.70					Hole Terminated at 0.40 m Refusal on Sandstone Bedrock. Backfilled with Drilling Spoil.			
				0.5 —									_
				_									
				_									
-07-05				_									
j: EIA 1.03 2014				1.0									
33 2014-07-05 Pr				_									
GD LIb: EIA 1.0				-									
d In Situ Tool - D				_									
Datgel Lab and				_									
16:53 10.0.000				1.5 —									-
e>> 21/08/2018				-									
J < <drawingfil< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawingfil<>				-									
23915 LOGS. GF				-									
30REHOLE 3 E				-									
LB LOG IS AUE				2.0 —									
EIA LIB 1.03.G						This borehole	e lo	g shou	ld be	e read in conjunction with EI Australia's accompanying star	ndaro	d note	25.

Date Completed 15/8/18

1 OF 1

15/8/18

Date: 15/8/18

Date: 21/8/18

Sheet

Date Started

Logged DR

Checked CS

ion F	str	Geotechnical	Project Location Position Job No. Client	Detai 242-2 Refer E239 Benn	led Sit 244 Yo r to Fig 115 iet Mur	e Inve ung S jure 2 rada A	tigation eet, Waterloo NSW Contractor chitects Drill Rig Inclination	N/A Hand Auge -90°	er
Dri	lling		Sampling				F	ield Material D	Description
VTER	PTH etres)	рерти	SAMPLE OR FIELD TEST	COVERED	APHIC G	CS SYMBOL	SOIL/ROCK MATERIAL DESC	RIPTION	DISTURE NUDITION NUSISTENCY INSITY

	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	DT		NE	0.0 —	0.15				-	CONCRETE: 150mm thick.	-		CONCRETE HARDSTAND
	AD/T	-	GW	-	0.35	BH3_0.2-0.3 ES PID = 2.1 ppm		\bigotimes		to coarse gravels, no odour.	м	-	-
				0.5—						Hole Terminated at 0.35 m Refusal on Second Concrete Slab. Backfilled with Drilling Spoil.			-
				-									-
7-05				-									-
14-07-05 Prj: EIA 1.03 2014-0				-									-
ool - DGD Lib: EIA 1.03 20				-									-
000 Datgel Lab and In Situ 1				-									-
>> 21/08/2018 16:53 10.0.0				1.5 —									-
5 LOGS.GPJ < <drawingfile< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawingfile<>				_									-
IS AU BOREHOLE 3 E2391				-									-
EIA LIB 1.03.GLB Log				2.0—		This borehold	e lo	g shou	ild be	e read in conjunction with EI Australia's accompanying star	ndaro	d note	25.

Project	Detailed Site Investigation
Location	242-244 Young Street, Waterloo NSW
Position	Refer to Figure 2
Job No.	E23915
Client	Bennet Murada Architects

Contractor N/A Drill Rig Hand Auger Inclination -90°

	Drilling Sampling									Field Material Description						
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
	DT		NE	0.0	0.15		1. x. 1. x. 1.		-	CONCRETE: 150mm thick.	-		CONCRETE HARDSTAND			
	AD/T	-	GW	_	0.30	BH4_0.2-0.3 ES PID = 2.1 ppm			-	FILL: Gravelly Clayey SAND; medium grained, light brown/orange/grey, with low to medium plasticity clay and fine, sub-angular to angular gravels, with plastics and bark fragments, weak hydrocarbon odour.	м	-	FILL -			
				_						Hole Terminated at 0.30 m Refusal on Coarse Concrete Gravels. Backfilled with Drilling Spoil.						
				0.5									-			
				-									-			
2014-07-05				_									-			
2014-07-05 Prj: EIA 1.03				1.0 —									-			
Tool - DGD Lib: EIA 1.03				_									-			
00 Datgel Lab and In Situ				-												
21/08/2018 16:53 10.0.0				1.5 —									-			
3.GPJ < <drawingfile>></drawingfile>				_									-			
EHOLE 3 E23915 LOG				_												
.03.GLB Log IS AU BOF				2.0 —		This borehole	e log	shou	ıld be	read in conjunction with EI Australia's accompanying star	ndaro	d note	25.			
EIA UB 1																

Project	Detailed Site Investigation
Location	242-244 Young Street, Waterloo NSW
Position	Refer to Figure 2
Job No.	E23915
Client	Bennet Murada Architects

Contractor N/A Drill Rig Hand Auger Inclination -90°

Г	Drilling Sampling					Sampling		Field Material Description					
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	DT			0.0	0.10		4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	-	CONCRETE: 100mm thick.	-		CONCRETE HARDSTAND	
	AD/T	-	GWNE	-	0.30	BH5_0.1-0.2 ES PID = 2.1 ppm		-	FILL: Gravelly SAND; fine to medium grained, brown, with fine to coarse, sub-angular to angular gravels, with slag, with sulfate and hydrocarbon odour.	м	-	FILL .	
				_					Hole Terminated at 0.30 m Refusal. PVC pipe encountered and hand augering stopped due to being potential service. Backfilled with Drilling Spoil.				
				0.5 —								-	
+07-05				-									
1.03 2014-07-05 Prj: EIA 1.03 2014				1.0								-	
ab and In Situ Tool - DGD Lib: EIA				-									
3 16:53 10.0.000 Datgel L				-								-	
<drawingfile>> 21/08/201.</drawingfile>				-									
HOLE 3 E23915 LOGS.GPJ <				-									
.03.GLB Log IS AU BOREH				- 2.0—		This borehole	log shoi	uld be	e read in conjunction with EI Australia's accompanying star	ndaro	d note		
EIA UB 1.													

Date Completed 15/8/18

1 OF 1

15/8/18

Date: 15/8/18

Sheet

N/A

Hand Auger

Date Started

Logged DR

lia	Project	Detailed Site Investigation	
	Location	242-244 Young Street, Waterloo NSW	
	Position	Refer to Figure 2	
	Job No.	E23915	Contractor
	Client	Bennet Murada Architects	Drill Rig
			Inclination

	Inclination -90°										Checked CS Date: 21/8/18				
		Dri	lling		Sampling	_		Field Material Description							
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
DT			0.0	0.15			4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	-	CONCRETE: 150mm thick.	-		CONCRETE HARDSTAND			
DЛ	-	GWNE	-		BH6_0.2-0.3 ES PID = 1.8 ppm		\bigotimes	-	FILL: Gravelly Clayey SAND; medium grained, light brown/brown/grey, with low to medium plasticity clay and fine, sub-angular to angular gravels, weak hydrocarbon odour.	м	-	FILL .			
•			0.5	0.50			\bigotimes		Hole Terminated at 0.50 m						
			_						Refusal on Coarse Gravels. Backfilled with Drilling Spoil.						
			_												
05 Prj: EIA 1.03 2014-07-05			- 1.0									-			
GD Lib: EIA 1.03 2014-07			-												
tgel Lab and In Situ Tool - D			_												
8/2018 16:53 10.0.000 Da			-									-			
3PJ < <drawingfile>> 21/0</drawingfile>			_												
EHOLE 3 E23915 LOGS.C			_												
1.03.GLB Log IS AUBOR			2.0-		This borehol	e lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying star	ndaro	d note	25.			
EIA LIE															

 Project
 Detailed Site Investigation

 Location
 242-244 Young Street, Waterloo NSW
 Position Refer to Figure 2

3	Contamination Remediation Geotechnical Location 242-244 Young Street, Waterloo NSW Position Refer to Figure 2 Refer to Figure 2									Sheet 1 OF 1 Date Started 15/8/18	
					Job No. Client	E239 Benr	915 let Mur	ada /	Contractor HartGeo Pty L rchitects Drill Rig Ute-mounted S	Date Completed 15/8/18 Logged DR Date: 15/8/18	
	Inclination -90°										Checked CS Date: 21/8/18
		Dril	ling		Sampling			Ļ	Field Material Desc	cription ├≻	
METHOD	PENETRATION	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBO	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION CONSISTENC DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
GLB Log IS AU BOREHOLE 3 E23815L0GS.GPJ <<00mming1e>> 21/082018 16.53 10.0.000 Dage! Lab and In Stu Tool - DGD Lb; ElA 1.03 2014-07.45 AD/T AD/T AD/T		GWNE	0.0	0.60	BH7_0.3-0.4 ES PID = 4.7 ppm BH7_1.5-1.6 ES PID = 3.7 ppm			s	FILL: Gravelly SAND; fine grained, brown, with fine, sub-angular to angular gravels, no odour. SAND; fine grained, light grey, no odour.		VIUM
201					This bore	nole lo	g shou	uld be	read in conjunction with EI Australia's accompanying sta	andard notes.	
E											

Project **Detailed Site Investigation** Location 242-244 Young Street, Waterloo NSW Position Refer to Figure 2 Job No.

Client

BOREHOLE: BH8

Field Material Description						
Inclination	-90°					
Drill Rig	Ute-mounted Solid Flight Auger					
Contractor	HartGeo Pty Ltd					

1 OF 1 Sheet Date Started 15/8/18 Date Completed 15/8/18 Logged DR Checked CS

Date: 15/8/18 Date: 21/8/18

Drilling Sampling MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0.0 FILL FILL: Gravelly SAND; fine grained, brown, with fine, sub-angular to angular gravels, no odour. BH8_0.3-0.4 ES PID = 2.1 ppm 0.5 0.70 ALLUVIUM S SAND; fine grained, light grey, no odour. 21/08/2018 16:53 10.0.000 Datget Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 GWNE ADT М 1.0 -1.5 <<DrawingFile>> BH8_1.7-1.8 ES PID = 1.1 ppm IS AU BOREHOLE 3 E23915 LOGS.GPJ Hole Terminated at 2.00 m Target Depth Reached. Backfilled with Drilling Spoil. 8 2.00 -2.0 FIA LIR 1 03 GI B 1 This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

	Contam	au	Str	Geotechnia	Project Location Position Job No. Client	Deta 242-2 Refe E239 Benr	iled Sit 244 Yo r to Fig 115 net Mur	e Inv ung \$ jure 2 rada /	rstigation treet, Waterloo NSW Contractor HartGeo Pty Lt rchitects Drill Rig Ute-mounted S Inclination -90°	id Solid F	BOR!	Sheet Date Started Date Complete Logged DR Checked CS	BH9M 1 OF 1 15/8/18 d 15/8/18 Date: 15/8/ Date: 21/8/	'18 '18
F		Dri	lling		Sampling				Field Material Desc	riptio	on			_
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	DENSITENCY DENSITY DENSITY DENSITY		DETAILS	
1/08/2018 16:53 10:0.000 Daget Lab and in Stu Tod - DCD [Lib: EIA 1.03 2014-07-05 Pg: EIA 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03			Ometal 0 0 0 1 1 2 3 3 - 3 -	0.80	BH9M_0.3-0.4 ES PID = 1.8 ppm BH9M_1.8-1.9 ES PID = 1.7 ppm				FILL: Gravelly SAND; fine grained, brown, with fine, sub-angular to angular gravels, no odour. SAND; fine grained, light grey, no odour. Hole Terminated at 5.00 m Target Depth Reached. Borehole Converted into Monitoring Well.	M W			 No Surface EBHTyPEfton Cuttings 50 mm uPVC Casing Bentonite Sand 50 mm uPVC Screen 	
U BOREHOLE 3 E23915 LOGS.GPJ < <drawingfile>> 2</drawingfile>			8											-
EIA LIB 1.03.GLB Log IS /] - 10—		This bore	hole lo	g shou	ıld be	read in conjunction with EI Australia's accompanying sta	ndar	d notes.			-

٦

	0	(2	ctr	alia	Project	Deta	iled Sit	e Inv	estigation	B	ORE	HOLE:	BH10M	
	Cont	tamina	tion R	SU	Geotechnic	Location Position Job No. Client	242-2 Refe E239 Benr	244 Yo r to Fig 915 net Mui	ung S jure 2 rada /	Street, Waterloo NSW Contractor HartGeo Pty Lt Architects Drill Rig Ute-mounted S	d olid F	light Auger	Sheet Date Started Date Comple Logged DR	1 OF 1 15/8/18 ted 15/8/18 Date: 15/8/ ²	18
										Inclination -90°			Checked CS	Date: 21/8/1	18
		ENE IRATION ESISTANCE	ATER DI	EPTH EPTH	DEPTH	SAMPLE OR FIELD TEST	ECOVERED	RAPHIC 0G	SCS SYMBOL	Field Material Desc		n BH10M BH10M BH10M	PIEZOMETER Static Water Level	DETAILS	
	2 0	ת ה	5	0-	RL		2		S -	CONCRETE: 150mm think	ΣU			E Gatic Cover	_
	2			- - - 1— -	<u>0.15</u>	BH10M_0.4-0.5 ES PID = 1.4 ppm				FILL: Gravelly CLAY; low to medium grained, brown, with fine to coarse gravels, no odour.	M			Calc Cover Cover Cuttings 50 mm uPVC Casing Bentonite	· · · · · · · · · · · · · · · · · · ·
				- 2—	2.00	BH10M_1.7-1.8 ES PID = 2.4 ppm		<u> </u>	s	SIITY CLAY (PEAT); medium plasticity, dark brown, no odour.	_				-
IS AU BOREHOLE 3 E28915 LOGS. GPJ < <drawingfie>> 21/08/2018 16:53 10.0.000 DaigeLab and In Stu Tod - DGD Lik: El A 1.03 2014/07-05 Pg: ElA 1.03 2014/07-05 A 103 2014/07-05 A 1</drawingfie>				3	4.50	BH10M 2.4-2.5 ES PID = 1.7 ppm			CH CH	CLAY; medium to high plasticity, brown, no odour. SANDSTONE; fine grained, yellow, no odour. Hole Terminated at 5.50 m Target Depth Reached. Borehole Converted into Monitoring Well.	w			— Sand — 50 mm uPVC Screen — Cuttings	
A LIB 1.03.GLB Log				10 —		This boreh	ole lo	 g shou	uld be	e read in conjunction with EI Australia's accompanying sta	 ndard	I notes.			
ш 🛌															_

1

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

APPENDIX F Field Data Sheets

Site Inspection Card - CLM Projects Form OP 005 (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

Project Number:	E239B	Engineer Name:	DRICS							
Date:	3117/18	Time ON Site:	8:30							
Travel Time:	lhr	Time OFF Site:	10:00							
Site Address/Location: 242	1-244 Alot	Young Street White	rloo NSW							
Climatic Conditions: (100	idy Sunny	9,								
Current Site Uses: Film school engineerine I mone facturine workshop & officer										
to development company										
Surrounding Land Uses:										
North: Apartment block										
South: Open space	South: Open space & apartments									
East: Offices Iwor	kshops one	d general retail	(hair dresser & cafes)							
West: Apartments	West: Apartments									
Current Site Condition										
Buildings Structures:										
Slab on ground slab on ground susp starting ACM □ pate	pended slab	basement Level(s)	sub-stations Service pits / sumps							
Other (please decsribe):										
Soil / Vegetation (overgrown, dis	stressed, bare soil pa	tches):								
Locally good (ondition / (e	ically poor condition	(due to vehicle movement)							
Condition of concrete, bitumen i	roading, flooring etc.:		0							
Yes, generally	in good a	Indition, with sligh	t cracking & Staining.							
Evidence of USTs / UPSS Infrast	tructure:									
No										
Evidence of Groundwater Monito	oring Wells:									
Presence of Waste / Rubbish / S	tockpiles:									
Storage Low com	man under	600-10								
storage by con	ypang who	carpark.								
Jnusual Odours:										
NO										
Signed: DR		Name: 6 K	Date: # 31/7/18							

Site Inspection Card - CLM Projects Form OP-005 (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

Site Topography (s	slope of site, surface water, drainage, closest receptor etc.)
1	Plant de la la sue alte (lesseres louis)
Numbe	of level changer throughout the building clouing bugit
Hunter	street at lower clevation than young st.
Hazardous materia	Is / activities: (presence of asbestos, solid or liquid hazardous materials, infrastructure)
Alumerous	Engineering Marchiney (lather & turners)
Anacdatal Informa	tion
Anecuotar informa	
- Previous	occupionts: tibre optic caple Monufacuter (Finsar?)
Notes:	
- Access	for drilling rig was also completed.
	and a second
Ciana d	Names Defer
Signea:	Name: Date:

Site Inspection Card - General Form OP 005b (Rev 1)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

Project Number:	E23915	Sheet: of (Date: 15 / 8/13								
Project Name:	Notector - DST	Time at ARRIVAL:	: 3p (an)/pm								
Client Contact:	14416100 - 032	Time at DEPARTURE:	3.20 am/pm								
Site Address/Location: 21	Site Address/Location:										
Climatic Conditions:	20 244 Young St. Waterloo	NSM									
Completed Works (Describe sit	te conditions, stage of works, relevant environme	ental conditions) (Take p	photos)								
7:30: Arrive posite											
9:30: Damo's auger get stuck, started doing hand augers while											
houmanes he fixe	d the rig.	J	5								
11:30: finished hand augering and & first well construction.											
30			21 1								
12:00: Complete	id two augered holes and	second ma	nitoring well.								
1:15: Finish fi	nal monitoring wells.										
1:45: finished	concreting holes										
2:15: finished developing wells.											
2:30: nacked up and most acing loach to office											
F											
Comments / Issues / Conclusio	ons / Further Testing Required / Actions to be Un	dertaken / Timing of Act	ions:								
			-								
	-										
	· · · · · · · · · · · · · · · · · · ·										
Name:		Signed:									

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 33 102 449 507 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument: Mini RAE 3000

Serial Number: 592-906667 - El PID02 OR 592-901345 - El PID03

Instrument Conditions: Good

Calibration gas species: Isobutylene.

Calibration gas concentration:

Gas hottle number	676450-178	
	0	

This PID has been calibrated to Isobutylene gas with the span concentration displayed as

100

ppm at <u>PPT</u> ppm span setting (allowable range +/-10ppm from span setting).

The PID is initially zero calibrated in fresh air.

Remaining gas in bottle: <u>u</u> psi (if reading is <250 psi, notify Equipment Manager to arrange new

gas bottle order)

The above detector was calibrated in accordance with manufacturer's specifications.

Signed:	J.S.
Date: <u> U </u> 8	118
Time: <u>5:00</u>	pM

LEGEND

- --- Approximate site boundary

Mr Tim Sims Detailed Site Investigation 242-244 Young Street, Waterloo NSW

Proposed Sampling Location Plan

Site Inspection Card - General

Form OP 005b (Rev 1)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

Project Number:	E23915, EO2	Sheet: of Date: 24/08/18							
Project Name:		Time at ARRIVAL: //; 30@0/pm							
Client Contact:		Time at DEPARTURE: 3: 40 am/pm							
Site Address/Location: 242	- 244 Young St. Waterloo	D. NSW							
Climatic Conditions: Raining									
Completed Works (Describe sit	e conditions, stage of works, relevant environm	ental conditions) (Take photos)							
3 Ground	Samples (BH1M-1,	BHIM-1, BH10 M-1)							
aD and aT	taken @ BH9M								
	,								
Commente Llagues / Conclusio	no / Eurther Testing Dequired / Astisue to be U	dentelien / Timing of Actions							
Comments / Issues / Conclusio	ns / Further Testing Required / Actions to be on	dertaken / Timing of Actions:							
<i>Ú</i>									
Name:		Signed:							

Z:\11 - Templates\Field Forms_Worksheets\Water Sampling Field Sheet 2015\Water Sampling Field Sheet Rev1 20150604 - BAedit

		WATER	SAMPLI	NG FIELD	SHEET					
									eiaustralia	
Site Addre	ess: 242	2-244	Young	St	Moterly	00	Job Numb	per: E23915		
Client:	Pacisic.	Equit	1 Part	nus	Ptv L	to	Date: 24	1/08/18		
Field Staf	f: LB	7 7	1	1000			Sampling	Location ID BH9	Μ	
Well Loca	ation: 50	outhern	loundo	un (co	rner)	(Fia2)	Round No			
MEDIUM	0.0	Z	Groundwa	ter ⁰ DS	Surface Wa	ater	□Stormw	ater DOther:		
SAMPLIN	IG POINT	INFO								
Well Insta	allation Da	te:					Stick up //	down.(m): - 0.08	(+ above ground - below ground)	
Initial We	ll Depth (n	nBTOC):					Screen In	terval (mBTOC):		
Previous	Sampling	Date:					Previous	SWL (mBTOC):		
PID REAL	DINGS			/				, , , , , , , , , , , , , , , , , , ,	1	
PID Head	space (pp	om):		/			PID Back	ground (ppm):		
PID Breat	thing Space	e (ppm):	-/						/	
PRE PUR	GE		4					/		
Total Wel	I Depth (m	BTOC):	4.84				Well Head	d Condition: good		
SWL (mB	TOC):	2.60	101				Water Co	lumn (m): 22.4		
PHASE S	EPARATE	ED HYDRO	CARBON	IS (PSH)	/			() & ~ ~ 1	/	
Depth to F	PSH (mBT	OC):			/		PSH Visu	ally Confirmed (Bailer)	:	
PSH Thic	kness (mr	n):		. /	-					
PURGE A	ND SAMI	PLE		v						
Sampling	Method		Z ÍBladde	r [Peristalti	c 🗆	Submersit	le 🛛 Other:		
Depth of F	Pump Inle	t (mBTOC)	: 2.50)			Fill Timer:			
Pump Pre	essure Rec	nulator (ps	i):	60 p.si			Discharge	Timer		
Weather (Conditions	· ROUN	imaz	De local			Cycle:	PML		
Pump on	time: 1	20	Crig-				Pump off	time: 0: 20	1	
WATER (PARAMET	FRS				I unp on			
Probe Ma	ke and Mo	odel:	Ento				Bump Tes	st Date and Time:		
	Volume	SWL	Temp	EC	Redox	DO	pH Commente (colour turbidity adour aboon etc.)			
Time	(L)	(mbtoc)	(°°)	(µS/cm)	(mV)	(mg/L)	(units)	Comments (colour, t	urbidity, odour, sheen etc.)	
1:45	0.5	2.64	17,28	702	180.2	. 1.84	6.63	mount grey	h-turbidity,	
1:47	1.0	2.61	17.20	671	180.4	1.37	6.63	1 1		
1:51	1.5	2.60	17.26	606	181.5	2.32	6.62	, mo , mo -	V	
1:59	2.0	2.61	17:15	605	181.6	1.43	6.62		У	
								1		
								L		
						×				
						d.				
								1		
Stabi	ilisation ra	inge:	±0.2°C	±3%	±20mV	±10%	±0.2			
3 cons	ecutive re	adings								
OTHER C	OMMENT	S/OBSER	VATIONS	:						

aD and aT taken @ BH9M.

SIGNATURE: 2B

Z:\11 - Templates\Field Forms_Worksheets\Water Sampling Field Sheet 2015\Water Sampling Field Sheet Rev1 20150604 - BAedit

WATER SAMPLING FIELD SHEET

								Claastialia		
Site Addr	ess: 24	2-244	yound	3 St.	00	Job Number: E23915				
Client:	Pacific.	, Equit	V Par	theis	Ptv Lt	'd	Date: 24/8/18			
Field Staf	f: LB	ľ.	1		/		Sampling Location ID 12H10 M			
Well Loca	ation: Se	e Fia	2				Round No: 1			
MEDIUM		· Z	Groundwa	ter 🗆 S	Surface Wa	ater	□Stormw	ater DOther:		
SAMPLIN	IG POINT	INFO								
Well Insta	allation Dat	te:					Stick up /	(down/m): - O. (+ above ground - below ground)		
Initial We	ll Depth (n	BTOC):					Screen In	terval (mBTOC):		
Previous	Sampling	Date:					Previous	SWL (mBTOC):		
	DINGS	Bato.				1 TOTIOGO				
PID Hoad		m).		-/	PID Back	ground (nom):				
DID Broot	thing Space	(nnm):		/			TID Dack	ground (ppm).		
		e (ppm).								
Total Wal	UDenth (m		- 10					d Condition: 0000		
			0,10				Well Head			
SWL (MB		6.64 DUVDDC					valer Co	iumn (m): ~~46		
PHASE S	PARATE		CARBON	IS (PSH)			DOLLA			
Depth to	PSH (mBT	OC):					PSH Visu	ally Confirmed (Bailer):		
PSH Thic	kness (mn	n):								
PURGE A	AND SAME	PLE								
Sampling	g Method		Bladde	r [□Peristaltio		Submersik	ole 🛛 Other:		
Depth of I	Pump Inlet	t (mBTOC)):				Fill Timer:			
Pump Pre	essure Reg	gulator (ps	i):				Discharge	e Timer:		
Weather	Conditions						Cycle:			
Pump on	time: 2;	35					Pump off	time:		
WATER O	QUALITY	PARAMET	ERS							
Probe Ma	ke and Mo	odel:					Bump Tes	st Date and Time:		
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)		
2:42	0.5	2.67	19.18	254	167.6	1.66	6,48	prown area, h. n. n.		
2:44	1.0	2.67	19,31	251	167.9	1.47	6.49			
2:48	1.5	2.76	19.49	2,28	168.3	1,35	6.48			
2:51	2.0	2.79	19.46	226	168.5	1.54	6.48	Ý		
	00				1000	1	0.10			
~										
		S								
Stab	ilisation ra	inge:	±0.2°C	±3%	±20mV	±10%	±0.2			
3 cons	ecutive re	adings								
OTHER C	OMMENT	S/OBSER	VATIONS	:						
SIGNATU	JRE:	3		<i>p</i>						
1	0.**	- CPA								

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

APPENDIX G Chain of Custody and Sample Receipt Forms

source: [Untitled].pdf page: 1 SGS Ref: SE182724_COC

Sheet of	2	-			San	nple N	/latrix								Ana	lysis								Comments
Site: 742 - 244	Young S	treet,		Project No	:										e)	tivity)								HM A Arsenic Cadmium
Waterloo	NSW			E2391S			it, etc.)	AHs	AHS					tion	chang	onduc								Copper Lead
Laboratory:	SGS Aus Unit 16, ALEXAN P: 02 85	stralia 33 Maddox IDRIA NSW 94 0400 F: 0	Street, 2015 2 8594 0	499			(i.e. Fibro, Pair	TRH/BTEX/P	RH/BTEX/P	RH/BTEX			S	os Quantifica	C (cation ex	(electrical o	ring Suite	S					HM B / PAH	Mercury Nickel Zinc HM <u>B</u> Arsenic
Sample	Laboratory	Container	S	ampling	TER		HERS	A A /	N A N	N A /I	EX	OCs	sbesto	sbesto	I/CE	I/EC	ewate	OCA	SAS				CLPH	Chromium
D	ID	Туре	Date	Time	WA	SOI	OTI	ΞŎ	H	H	BI	2V	As	As	P	P	D	SР	Ч				TC	Mercury Nickel
BH2M_ 0.3-0.4	1	J, ZLB	15/8/1	8 Amip		X		X																Dewatering Suite pH & EC
- 0.5-0.6	2							X			3													TDS / TDU Hardness
-1.2-13	3	5							×						×							1		Metals (Al, As, Cd, Cr, Cu, Pb, Hq, Ni, Zp)
24-25		1																				TRH (F1, F2, F3, F4) BTEX		
RHIM - 2.4-35 RH2 01-2-2	4	J. 248			-			×	x														1	PAH Total Phenol
1 - 0.2-04	6	5							x						×						LABORATORY			
BH2 0.2-0.1	7	J. ZLR						×																Standard
RULL OI-DI	B	1						×																24 Hours
RHC AL-CI	9				-			x																48 Hours
RH6 01-02	10				1			X																72 Hours
Dust -2 -43	11	J			1			x																Other
RUZ IS IL	- 11	Т		-	+	1																		
Container Type: J= solvent washed, aci S= solvent washed, ac	d rinsed,Tef id rinsed gla	lon sealed, glas ss bottle	ss jar			Inve	stigato	or: I atte with	est tha stanc	at thes lard E	se san I field	nples v sampl	vere c ing pro	ollecte	l ed in a res.	ccord	ance	F	Report	with E	Wast	e Clas	sificati	on Table
P= natural HDPE plast VC= glass vial, Teflon ZLB = Zip-Lock Bag	ic bottle Septum					Samp Pri	oler's N nt	ame (El)):			Rece	ived by	(SGS)	:			S-	SGS	EHS /	lexan	dria l	Labora	atory
		S	uite 6.01	, 55 Miller S	Street, Signature Signature																			
eiaus	trali	a	PTRMU Ph:	9516 0722	009	Date 16/8/18 12:25								25		SE	182	724	CC)C				
Continention - Remet	COC March 2018 FORM v.4 - SGS								Please e-mail laboratory results to: lab@eiaustralia.com.au															

Sheet 7 of	2					Sam	nle M	ole Matrix Analysis														Comments			
Site: 242 244 Water loo	Young	st reet,	ŀ	Pro E1	oject No:	Juli		, etc.)	AHs tos	Hs					ion	hange)	inductivity)								HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	SGS Au Unit 16, ALEXAN P: 02 85	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	Street, 2015 2 8594	0499				(i.e. Fibro, Paint	TRH/BTEX/P/ P/PCB/Asbes	IRH/BTEX/P	IRH/BTEX			SO	os Quantificat	EC (cation exc	C (electrical co	ering Suite	S					HM B / PAH	Mercury Nickel Zinc HM B Arsenic Cadmium
Sample ID	Laboratory ID	Container Type	Dat	Sampli te	ing Time	WATER	SOIL	OTHERS	HMA /	HM A /	HMAN	BTEX	VOCs	Asbest	Asbest	pH / CE	pH / EC	Dewate	sPOCA	PFAS				TCLP	Chromium Lead Mercury
BH8_0.3-0.4	12	T, 7LB	15/8	18	Анри		×		×																Dewatering Suite
BH8_1.7-1.8	13	J	(×						X									TDS / TDU Hardness
BH9M_ 0.3-0.4	14	J, 24B							×																Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Ha, Ni, Zp)
1 - 1.8-1.9	15	J								×						X									TRH (F1, F2, F3, F4) BTEX
BHION _ 0. 4- 0.5	16	J, 26							×														PAH Total Phenol		
BHIOM _ 1.7.18	17	J								×						X									LABORATORY TURNAROUND
BHIOM 24-25	18	1								×															X Standard
QD1	19	J									×														24 Hours
TS	20	VC										×													48 Hours
TB	21	VC					1					X													72 Hours
QR1	22	S.P. ZVC				×					×														Other
QUBL		1	V	1	V	1																			
Container Type: J= solvent washed, acid rinsed, Teflon sealed, glass jar S= solvent washed, acid rinsed glass bottle P= natural HDPE plactic bottle							Inve	stigato	r: I atte with	est tha stand	at thes lard E	se sam I field	iples v sampli	ples were collected in accordance Report with El Was sampling procedures.					El Wast	e Clas	sificati	on Table			
VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag							Samp Pri	oler's Na nt	ame (El):			Rece Prir	ived by	(SGS)	:			Sam	pler's	Com	ments:			
eiaus	eiaustralia Suite 6.01, 55 Mille PYRMONT NSW Ph: 9516 072							Street, 009 Date 16/8/18 Nesse Signature Signature Date 16/8/18 Date 18 Date 1																	
Contentional Linesteed	elaustralia. coc March 2018 FORM v.4-							YOR se e-r	nail lat	: porato	ory res	ults to	: lab(@eia	ustra	alia.co	om.a	u							

CLIENT DETAIL	S	LABORATORY DETA	AILS	
Contact	David Rizkalla	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	david.rizkallar@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E23915 242-244 Young St Waterloo NSW	Samples Received	Thu 16/8/2018	
Order Number	E23915	Report Due	Thu 23/8/2018	
Samples	22	SGS Reference	SE182724	

_ SUBMISSION DETAILS

This is to confirm that 22 samples were received on Thursday 16/8/2018. Results are expected to be ready by COB Thursday 23/8/2018. Please quote SGS reference SE182724 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 16/8/2018 Yes 4.1°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 21 Soil, 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

2 soil and 1 water samples on hold.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS _

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

Project E23915 242-244 Young St Waterloo NSW

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	pH in soil (1:5)	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH1M_0.3-0.4	29	14	26	11	-	10	12	8
002	BH1M_0.5-0.6	29	14	26	11	-	10	12	8
003	BH1M_1.2-1.3	-	-	26	-	1	10	12	8
004	BH1M_3.4-3.5	-	-	26	-	-	10	12	8
005	BH2_0.1-0.2	29	14	26	11	-	10	12	8
006	BH2_0.3-0.4	-	-	26	-	1	10	12	8
007	BH3_0.2-0.3	29	14	26	11	-	10	12	8
008	BH4_0.2-0.3	29	14	26	11	-	10	12	8
009	BH5_0.1-0.2	29	14	26	11	-	10	12	8
010	BH6_0.2-0.3	29	14	26	11	-	10	12	8
011	BH7_0.3-0.4	29	14	26	11	-	10	12	8
012	BH8_0.3-0.4	29	14	26	11	-	10	12	8
013	BH8_1.7-1.8	-	-	26	-	1	10	12	8
014	BH9M_0.3-0.4	29	14	26	11	-	10	12	8
015	BH9M_1.8-1.9	-	-	26	-	1	10	12	8
016	BH10M_0.4-0.5	29	14	26	11	-	10	12	8
017	BH10M_1.7-1.8	-	-	26	-	1	10	12	8
018	BH10M_2.4-2.5	-	-	26	-	-	10	12	8
019	QD1	-	-	-	-	-	10	12	8
020	TS	-	-	-	-	-	-	12	-
021	ТВ	-	-	-	-	-	-	12	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

Project E23915 242-244 Young St Waterloo NSW

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Fibre Identification in soil	Mercury in Soil	Moisture Content	Total Recoverable Elements in Soil/Waste
001	BH1M_0.3-0.4	-	2	1	1	7
002	BH1M_0.5-0.6	-	2	1	1	7
003	BH1M_1.2-1.3	13	-	1	1	7
004	BH1M_3.4-3.5	-	-	1	1	7
005	BH2_0.1-0.2	-	2	1	1	7
006	BH2_0.3-0.4	13	-	1	1	7
007	BH3_0.2-0.3	-	2	1	1	7
008	BH4_0.2-0.3	-	2	1	1	7
009	BH5_0.1-0.2	-	2	1	1	7
010	BH6_0.2-0.3	-	2	1	1	7
011	BH7_0.3-0.4	-	2	1	1	7
012	BH8_0.3-0.4	-	2	1	1	7
013	BH8_1.7-1.8	13	-	1	1	7
014	BH9M_0.3-0.4	-	2	1	1	7
015	BH9M_1.8-1.9	13	-	1	1	7
016	BH10M_0.4-0.5	-	2	1	1	7
017	BH10M_1.7-1.8	13	-	1	1	7
018	BH10M_2.4-2.5	-	-	1	1	7
019	QD1	-	-	1	1	7
020	TS	-	-	-	1	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client EI AUSTRALIA

Project E23915 242-244 Young St Waterloo NSW

_	SUMMARY	OF ANALYSIS					
	No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
	022	QR1	1	7	10	12	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet(of					Sam	ple N	<i>f</i> latrix								Ana	lysis								Comments
Site: 242-244	Young (00	Street. WSW		Project No:			c;)	<u>،</u>						_	nge)	uctivity)								HM A Arsenic Cadmium Chromium
Laboratory:	Envirol 12 Ash CHATS P: 02 9	ab Services ley Street, WOOD NS 910 6200	s N 2067				(i.e. Fibro, Paint, et	<pre>FRH/BTEX/PAH P/PCB/Asbestos</pre>	RH/BTEX/PAH	RH/BTEX			SC	s Quantification	C (cation excha	(electrical cond	ring Suite	S				-	IM ^B / PAH	Lead Mercury Nickel Ziric HM B Arsenic
Sample ID	Laboratory ID	Container Type	Sa	mpling	ATER	ol	THERS	HM≜ /	łM≜∕T	HMA/T	BTEX	/OCs	Asbesto	Asbestc	H / CE	H / EC	Dewate	POCA	oFAS				LCLP H	Cadmium Chromium Lead Marcuar
AT.	$\overline{(}$	<u>т</u>			3	ة ب	0			 	ш ———		4	-	<u>.</u>	<u> </u>		0			 			Nickel Dewatering Suite
														Jot Jot Tim Rec Ter Co	RoLAB No: e Rece e Rece leived L p: Coo bling: Ic autiv: 0	E Cha (9) ived: i i i i i i i i i i i i i i i i i i i	rvirolat 12 sweed 6 / 6 / 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Servit Ashley NSW 24 1010 62 5 / (0 5 / (0 20 . (3 St 67 00 3 S					pH & EC TDS / TDU Hardness Total Cyanide Metals (AI, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX PAH Total Phenol LABORATORY TURNAROUND X Standard 24 Hours 48 Hours 72 Hours Other
Container Type: J= solvent washed, aci S= solvent washed, ac	d rinsed,Te id rinsed gla	flon sealed, glas	ss jar		<u>{</u>	lnve	stigato	or: I att with	est tha stand	at thes lard E	e san I field	nples v sampl	were c ing pro	ollecte ocedu	ed in a res.	accord	lance	F	Report	with E	l Wast	e Clas	sificati	on Table
P= natural HDPE plast VC= glass vial, Teflon ZLB = Zip-Lock Bag	treet, 09 .au	with standard Er field sampling procedures. Sampler's Name (EI): Received by (Envirolab) 3.05 Sampler's Comments: Print Print Ken'h My Data Date 6/8/18 F Date 16/8/18 F IMPORTANT: Please e-mail laboratory results to: lab@eiaustralia.com.au																						

٠

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lab Email

Sample Login Details	
Your reference	E23915, Waterloo
Envirolab Reference	198566
Date Sample Received	16/08/2018
Date Instructions Received	16/08/2018
Date Results Expected to be Reported	23/08/2018

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11.2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

source: [Untitled].pdf page: 10 SGS Ref: SE183173_COC

Sheet	of	-		Sam	nple N	/latrix								Ana	lysis				2				Comments	
Site: 242 - 24 WATERLO	4 700 0	NG ST		Project No: E23915.			etc.)	.Hs os	Ts.					u	ange)	iductivity)					(HM A Arsenic Cadmium Chromium Copper
Laboratory:	SGS Au Unit 16, ALEXAN P: 02 85	stralia 33 Maddox IDRIA NSW 94 0400 F: 0	Street, / 2015 02 8594 04	.99			i.e. Fibro, Paint,	RH/BTEX/PA	RH/BTEX/PAI	RH/BTEX			Ø	s Quantificatio	C (cation exch	(electrical con	ing Suite			WITOW	OL (TOTAL	VESS	Λ ^B / PAH	Lead Mercury Nickel Zinc HM <u>B</u> Arsenic
Sample	Laboratory	Container	Sa	mpling	TER		HERS (1A /1 P/OF	T ≠ I	A TI	X	Cs	besto	besto	/ CE(/EC	vater	DCAS	AS	IMO	IENC	ARDI	LP HI	Cadmium Chromium
	ID	Гуре	Date	Time	WA-	SOI	OTH	AH 00	HN	HN	BTI	VO	Ast	Ast	Hd	Hd	Dev	sP(PF/	A	Q.	H	TCI	Lead Mercury Nickel
BH1M-1	S, axVC, P	1	24/8/18	PM	X				×			×				×				\times	\times	\times		Dewatering Suite
BH9M-1		2			1				1			1				1)			TDS / TDU Hardness
BHIOM-1	Y	3							T			-				1				1	1	1		Total Cyanide Metals (Al, As, Cd, Cr,
QID1-GW		Le								×														Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
	1	,	V																				PAH Total Phenol	
BHR-1	¥	5	¥	1	V					×														LABORATORY
GWQTBI	VC	G	LAB		×						×													
GWATSI	VC	2	PREPH	RED	×						×				Î	999 E		exand	ria La	iborate 	ory			X Standard
																SE1	831	73	COO	2				
											-				R	eceiv	ed: 28	B-Au	g – 20	18				Other
																								U Other
Container Type: J= solvent washed, ad S= solvent washed, a			Investigator: I attest that these samples were collected in accorda with standard EI field sampling procedures.						ance	ce Report with El Waste Classification Table					on Table									
VC= glass vial, Teflon ZLB = Zip-Lock Bag			Sampl	er's Na	me (EI):				Recei	ved by	(SGS):				Sam	oler's (Comm	ents:						
			C	HRI	S	SORD	1		Prin	S	ub	9			PLEA	SE	сс							
10	Suite 6.01, 55 Miller S							Street, Signature Signature							david. rizkalla @ eiaustralia.com.au									
oiouc	trali		PTRIMON Ph: 9	516 0722	9	Date	28	. 8.	18			Date 28	209	118	0	3.2	0							
eldus	udila	stralia.com.a	.au IMPORTANT:						-															
			COC March 2018	FORM v.4 - SGS		Pleas	se e-m	ail lab	orator	ry resu	ults to:	lab@	geia	ustra	lia.co	m.au	L							

- CLIENT DETAIL	S	LABORATORY DETA	LABORATORY DETAILS								
Contact	Chris Sordy	Manager	Huong Crawford								
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental								
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015								
Telephone	61 2 95160722	Telephone	+61 2 8594 0400								
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499								
Email	christopher.sordy@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com								
Project	E23915-E02 - 242-244 Young St Waterloo	Samples Received	Tue 28/8/2018								
Order Number	E23915-E02	Report Due	Tue 4/9/2018								
Samples	7	SGS Reference	SE183173								

_ SUBMISSION DETAILS

This is to confirm that 7 samples were received on Tuesday 28/8/2018. Results are expected to be ready by COB Tuesday 4/9/2018. Please quote SGS reference SE183173 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 28/8/2018 Yes 7.2°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 7 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23915-E02 - 242-244 Young St Waterloo

SUMMAR	Y OF ANALYSIS			1		1	1	1	
No.	Sample ID	Conductivity and TDS by Calculation - Water	Metals in Water (Dissolved) by ICPOES	PAH (Polynuclear Aromatic Hydrocarbons) in Water	pH in water	Total Phenolics in Water	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH1M-1	1	1	22	1	1	10	79	8
002	BH9M-1	1	1	22	1	1	10	79	8
003	BH10M-1	1	1	22	1	1	10	79	8
004	GW-QD1	-	-	-	-	-	10	12	8
005	BHR-1	-	-	-	-	-	10	12	8
006	GWQTB1	-	-	-	-	-	-	12	-
007	GWQTS1	-	-	-	-	-	-	12	-

_ CONTINUED OVERLEAF

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS
001	BH1M-1	1	8
002	BH9M-1	1	8
003	BH10M-1	1	8
004	GW-QD1	1	7
005	BHR-1	1	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E23915-E02 - 242-244 Young St Waterloo

Sheet 1 of	1	_			Sam	iple N	Aatrix								Ana	lysis								Comments
Site: 242-241 WATERLOC		UNG ST		Project No: E23915. E02			t, etc.)	AHs tos	\Hs	1				ion .	thange)	inductivity)					-			HMA Arsenic Cadmium Chromium Copper Lead
Laboratory:	Enviro 12 Ash CHATS P: 02 9	lab Services ley Street, WOOD NSV 910 6200	N 2067		(i.e. Fibro, Pain RH/BTEX/P/ RH/BTEX/P/ RH/BTEX s Quantificat s Quantificat s Quantificat ing Suite ing Suite					S					Hercury Nickel Zinc HM ^B Arsenic									
Sample	Laboratory	Container	Sa	impling	TER		HERS	NÅ / CP/O	М А /Л	МÅЛ	Ж	ပ္လ	sbesto	sbest	1/ CE	H/EC	ewate	ocA	sA⁼				CLP F	Cadmium Chromium Lead
ں 		Туре	Date	Time	MA M	S S	<u>5</u>	Ξŏ	· H	Η		×	As As	∛	쇼	눱	ă	цо	Ľ.				<u> </u>	Mercury Nickel
QT-1-; <u>G</u> W		S, P, VCx2	24-8-		×					×								Jot Tim Rec Coc		El Chata 190 ived: 2 ived: 7 Sy: 0 Sy: 0 S	virolal 12 12 12 12 12 12 12 12 12 12 12 12 12	Servic Ashloy ISW 20 2 2 1 (C	es St 67 09	Dewatering Suite pH & EC TDS / TDU Hardness Total Cyanide Metals (AI, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX PAH Total Phenol LABORATORY TURNAROUND X Standard 24 Hours 48 Hours 72 Hours
Container Type: J= solvent washed, ac S= solvent washed, ac P= natural HDPE plast VC= glass vial, Teflon ZLB = Zip-Lock Bag	id rinsed,Te id rinsed gla ic bottle Septum	flon sealed, glas ass bottle Si	uite 6.01, PYRMOI Ph: § lab@eiat	, 55 Miller St NT NSW 200 3516 0722 ustralia.com,	reet, 09 .au	Investigator: I attest that these samples were collected in accorda with standard El field sampling procedures. Sampler's Name (EI): Received by (Envirolab) Print CHRIS SOROY Signature Date 28-8-18 IMPORTANT: Please e-mail laboratory results to: lab@eigustralia.com au							R Sam PLE David	eport pler's ASE).riz	with El Comn CC	I Wasti nents:	e Class Qùaus	sificatio	on Table ζ. εωτη. αυ					

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	David Rizkalla

Sample Login Details	
Your reference	E23915.E02
Envirolab Reference	199432
Date Sample Received	28/08/2018
Date Instructions Received	28/08/2018
Date Results Expected to be Reported	04/09/2018

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10.6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

APPENDIX H Laboratory Analytical Reports

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS					
Contact	David Rizkalla	Manager	Huong Crawford					
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental					
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone Facsimile Email	61 2 95160722 (Not specified) david.rizkallar@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com					
Project Order Number Samples	E23915 242-244 Young St Waterloo NSW E23915 22	SGS Reference Date Received Date Reported	SE182724 R0 16/8/2018 23/8/2018					

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

Kamrul Ahsan Senior Chemist

Bennet Lo Senior Organic Chemist/Metals Chemist

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Un

Huong Crawford Production Manager

hone

Shane McDermott Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

VOC's in Soil [AN433] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
Benzene	mg/kg	0.1	<0.1	0.4	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	1.8	<0.1	0.2	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	0.4	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	2.7	<0.2	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	0.5	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	3.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	5.8	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	0.3	2.0	<0.1	<0.1	<0.1

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 15/8/2018 SE182724.006	SOIL - 15/8/2018 SE182724.007	SOIL - 15/8/2018 SE182724.008	SOIL - 15/8/2018 SE182724.009	SOIL - 15/8/2018 SE182724.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1	TS
			5011	5011	5011	5011	SOII
					-	-	-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018	SE182724.019	SE182724.020
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[86%]
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[88%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[80%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	[80%]
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[86%]
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	-
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-

VOC's in Soil [AN433] Tested: 22/8/2018 (continued)

			ТВ
			SOIL -
		1.05	15/8/2018
PARAMETER	UOW	LUR	SE182724.021
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			00"	0.011	00"	0.011	00"
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	0.4	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH2 0.3-0.4	BH3 0.2-0.3	BH4 0.2-0.3	BH5 0.1-0.2	BH6 0.2-0.3
							-
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
			10/0/2010	10/0/2010	10/0/2010	10/0/2010	10/0/2010
PARAMETER	UOM	LOR	SE182724.006	SE182724.007	SE182724.008	SE182724.009	SE182724.010
TRH C6-C9	ma/ka	20	<20	<20	<20	<20	<20
	nig/kg	20	-20	-20	-20	-20	-20
Benzene (E0)	ma/ka	0.1	<0.1	<0.1	<0.1	<01	<01
Delizene (10)	під/ку	0.1	-0.1	-0.1	-0.1	-0.1	-0.1
TPH C6 C10	malka	25	-25	-25	-25	-25	-25
TKH 00-010	iiig/kg	20	~25	~23	~25	~23	~23
TBH C6-C10 minus BTEX (E1)	ma/ka	25	\$25	<25	<25	<25	<25
	iiig/kg	25	-23	-20	-23	-20	-20

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1
			SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018	SE182724.019
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
TRH C10-C14	mg/kg	20	100	32	<20	<20	<20
TRH C15-C28	mg/kg	45	1100	270	<45	<45	88
TRH C29-C36	mg/kg	45	190	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	180	50	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	180	48	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	1300	300	<90	<90	110
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	1400	310	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	1400	350	<210	<210	<210

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 15/8/2018 SE182724.006	SOIL - 15/8/2018 SE182724.007	SOIL - 15/8/2018 SE182724.008	SOIL - 15/8/2018 SE182724.009	SOIL - 15/8/2018 SE182724.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	86	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	110	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	110	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	160	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

ANALYTICAL RESULTS

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 22/8/2018 (continued)

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1
			SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018	SE182724.019
TRH C10-C14	mg/kg	20	<20	<20	<20	25
TRH C15-C28	mg/kg	45	<45	<45	<45	200
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	42
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	42
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	210
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	220
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	250

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			001	001	001	001	00"
			SOIL	SOIL	SUIL	SOIL	- SUIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
Naphthalene	mg/kg	0.1	8.9	4.0	<0.1	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	6.7	2.4	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	5.6	2.0	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	5.8	1.6	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	1.4	0.5	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	9.2	4.2	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	20	16	<0.1	<0.1	0.1
Anthracene	mg/kg	0.1	7.3	3.2	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	24	9.7	<0.1	<0.1	0.2
Pyrene	mg/kg	0.1	23	9.0	<0.1	<0.1	0.2
Benzo(a)anthracene	mg/kg	0.1	11	4.0	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	10	3.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	11	2.9	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	3.9	1.3	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	10	2.9	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	4.1	1.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	0.5	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	3.7	0.9	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>14</td><td>4.0</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	14	4.0	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>14</td><td>4.0</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	14	4.0	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>14</td><td>4.0</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	14	4.0	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	170	69	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	150	65	<0.8	<0.8	<0.8

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
			SOII	SOII	2011	2011	SOIL
					-	-	-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.006	SE182724.007	SE182724.008	SE182724.009	SE182724.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	0.2	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	1.0	0.9	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	0.3	0.3	<0.1
Fluoranthene	mg/kg	0.1	0.1	<0.1	2.0	1.6	<0.1
Pyrene	mg/kg	0.1	0.1	<0.1	1.9	1.6	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.9	1.0	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	0.8	0.9	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.8	1.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.4	0.5	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.7	1.0	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	0.3	0.5	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	0.3	0.5	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>1.0</td><td>1.3</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	1.0	1.3	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>1.1</td><td>1.4</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	1.1	1.4	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>1.0</td><td>1.4</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	1.0	1.4	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	9.6	10	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	9.6	10	<0.8

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 22/8/2018 (continued)

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			001	001	001	001	00"
			SOIL	SUIL	SOIL	SUIL	SUIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	0.2	<0.1	<0.1	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.8	<0.1	<0.1	0.4	<0.1
Anthracene	mg/kg	0.1	0.3	<0.1	<0.1	0.1	<0.1
Fluoranthene	mg/kg	0.1	3.0	0.1	<0.1	1.2	<0.1
Pyrene	mg/kg	0.1	3.2	0.1	<0.1	1.2	<0.1
Benzo(a)anthracene	mg/kg	0.1	2.1	<0.1	<0.1	0.7	<0.1
Chrysene	mg/kg	0.1	1.9	<0.1	<0.1	0.6	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	2.5	<0.1	<0.1	0.6	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	1.2	<0.1	<0.1	0.3	<0.1
Benzo(a)pyrene	mg/kg	0.1	2.3	<0.1	<0.1	0.6	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	1.1	<0.1	<0.1	0.3	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	1.0	<0.1	<0.1	0.3	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.1</td><td><0.2</td><td><0.2</td><td>0.8</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	3.1	<0.2	<0.2	0.8	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.1</td><td><0.3</td><td><0.3</td><td>0.9</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	3.1	<0.3	<0.3	0.9	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.1</td><td><0.2</td><td><0.2</td><td>0.8</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	3.1	<0.2	<0.2	0.8	<0.2
Total PAH (18)	mg/kg	0.8	20	<0.8	<0.8	6.3	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	20	<0.8	<0.8	6.3	<0.8

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5
			SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.3	<0.1	<0.1
Pyrene	mg/kg	0.1	0.4	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.2	<0.1	<0.1
Chrysene	mg/kg	0.1	0.2	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.2	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.3	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	1.7	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	1.7	<0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH2_0.1-0.2	BH3_0.2-0.3	BH4_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.005	SE182724.007	SE182724.008
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	0.3	0.2	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	0.9	0.6	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 22/8/2018 (continued)

			BH5_0.1-0.2	BH6_0.2-0.3	BH7_0.3-0.4	BH8_0.3-0.4	BH9M_0.3-0.4
			00"	00"	00"	0.011	00"
			SUIL	SOIL	SUIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.009	SE182724.010	SE182724.011	SE182724.012	SE182724.014
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	0.5	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	0.4	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	5.1	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	6	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 22/8/2018 (continued)

			BH10M_0.4-0.5
			SOIL
			-
			15/8/2018
PARAMETER	UOM	LOR	SE182724.016
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1

OP Pesticides in Soil [AN420] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH2_0.1-0.2	BH3_0.2-0.3	BH4_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.005	SE182724.007	SE182724.008
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH5_0.1-0.2	BH6_0.2-0.3	BH7_0.3-0.4	BH8_0.3-0.4	BH9M_0.3-0.4
			SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018
PARAMETER	UOM	LOR	SE182724.009	SE182724.010	SE182724.011	SE182724.012	SE182724.014
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH10M_0.4-0.5
PARAMETER	UOM	LOR	SOIL - 15/8/2018 SE182724.016
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

PCBs in Soil [AN420] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH2_0.1-0.2	BH3_0.2-0.3	BH4_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 15/8/2018 SE182724.001	SOIL - 15/8/2018 SE182724.002	SOIL - 15/8/2018 SE182724.005	SOIL - 15/8/2018 SE182724.007	SOIL - 15/8/2018 SE182724.008
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH5_0.1-0.2	BH6_0.2-0.3	BH7_0.3-0.4	BH8_0.3-0.4	BH9M_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.009	SE182724.010	SE182724.011	SE182724.012	SE182724.014
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH10M_0.4-0.5
PARAMETER	UOM	LOR	SOIL - 15/8/2018 SE182724.016
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

pH in soil (1:5) [AN101] Tested: 22/8/2018

			BH1M_1.2-1.3	BH2_0.3-0.4	BH8_1.7-1.8	BH9M_1.8-1.9	BH10M_1.7-1.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.003	SE182724.006	SE182724.013	SE182724.015	SE182724.017
pH	pH Units	0.1	7.6	9.6	8.9	8.8	7.2

ANALYTICAL RESULTS

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 17/8/2018

			BH1M_1.2-1.3	BH2_0.3-0.4	BH8_1.7-1.8	BH9M_1.8-1.9	BH10M_1.7-1.8
			SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018
PARAMETER	UOM	LOR	SE182724.003	SE182724.006	SE182724.013	SE182724.015	SE182724.017
Exchangeable Sodium, Na	mg/kg	2	15	150	37	18	11
Exchangeable Sodium, Na	meq/100g	0.01	0.06	0.66	0.16	0.08	0.05
Exchangeable Sodium Percentage*	%	0.1	6.8	21.5	6.9	3.3	0.2
Exchangeable Potassium, K	mg/kg	2	9	64	10	11	50
Exchangeable Potassium, K	meq/100g	0.01	0.02	0.16	0.03	0.03	0.13
Exchangeable Potassium Percentage*	%	0.1	2.3	5.3	1.1	1.1	0.6
Exchangeable Calcium, Ca	mg/kg	2	160	290	410	420	4200
Exchangeable Calcium, Ca	meq/100g	0.01	0.81	1.5	2.1	2.1	21
Exchangeable Calcium Percentage*	%	0.1	84.9	47.8	87.5	87.5	93.6
Exchangeable Magnesium, Mg	mg/kg	2	7	96	13	23	150
Exchangeable Magnesium, Mg	meq/100g	0.02	0.06	0.78	0.11	0.19	1.3
Exchangeable Magnesium Percentage*	%	0.1	6.1	25.4	4.5	8.1	5.6
Cation Exchange Capacity	meq/100g	0.02	0.96	3.1	2.3	2.4	22

ANALYTICAL RESULTS

SE182724 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
Arsenic, As	mg/kg	1	15	4	2	1	3
Cadmium, Cd	mg/kg	0.3	0.5	1.0	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	34	14	0.5	2.7	15
Copper, Cu	mg/kg	0.5	50	34	1.5	2.2	16
Lead, Pb	mg/kg	1	76	84	5	10	24
Nickel, Ni	mg/kg	0.5	59	30	<0.5	0.8	12
Zinc, Zn	mg/kg	2	140	1200	87	66	70

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.006	SE182724.007	SE182724.008	SE182724.009	SE182724.010
Arsenic, As	mg/kg	1	2	3	5	3	3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.7	0.3	<0.3
Chromium, Cr	mg/kg	0.3	2.7	6.5	8.9	11	2.3
Copper, Cu	mg/kg	0.5	4.2	14	50	28	6.7
Lead, Pb	mg/kg	1	9	13	180	140	19
Nickel, Ni	mg/kg	0.5	2.2	21	4.3	10	1.9
Zinc, Zn	mg/kg	2	15	56	290	110	27

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
Arsenic, As	mg/kg	1	5	2	2	7	2
Cadmium, Cd	mg/kg	0.3	0.4	<0.3	0.3	1.0	<0.3
Chromium, Cr	mg/kg	0.3	9.3	5.5	1.9	12	2.3
Copper, Cu	mg/kg	0.5	31	16	5.0	52	2.0
Lead, Pb	mg/kg	1	73	33	61	210	19
Nickel, Ni	mg/kg	0.5	6.3	4.0	<0.5	5.8	0.6
Zinc, Zn	mg/kg	2	150	55	43	420	3.5

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018	SE182724.019
Arsenic, As	mg/kg	1	9	9	2	4
Cadmium, Cd	mg/kg	0.3	2.6	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	5.0	5.2	3.5	8.5
Copper, Cu	mg/kg	0.5	7100	9.9	2.4	11
Lead, Pb	mg/kg	1	850	10	2	210
Nickel, Ni	mg/kg	0.5	12	2.1	0.7	3.4
Zinc, Zn	mg/kg	2	3800	18	2.1	54

Mercury in Soil [AN312] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
Mercury	mg/kg	0.05	0.42	0.53	<0.05	<0.05	<0.05

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018
PARAMETER	UOM	LOR	SE182724.006	SE182724.007	SE182724.008	SE182724.009	SE182724.010
Mercury	mg/kg	0.05	<0.05	<0.05	0.25	0.17	<0.05

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
Mercury	mg/kg	0.05	0.16	0.07	0.09	0.23	<0.05

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1
			SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018	SE182724.019
Mercury	mg/kg	0.05	0.09	<0.05	<0.05	0.11

Moisture Content [AN002] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
% Moisture	%w/w	0.5	12	6.9	1.6	7.4	9.9

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.006	SE182724.007	SE182724.008	SE182724.009	SE182724.010
% Moisture	%w/w	0.5	9.3	11	12	8.9	6.4

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
% Moisture	%w/w	0.5	5.3	9.0	5.5	4.4	2.8

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1	TS
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018	SE182724.019	SE182724.020
% Moisture	%w/w	0.5	11	21	16	13	4.3

Fibre Identification in soil [AN602] Tested: 21/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH2_0.1-0.2	BH3_0.2-0.3	BH4_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.005	SE182724.007	SE182724.008
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH5_0.1-0.2	BH6_0.2-0.3	BH7_0.3-0.4	BH8_0.3-0.4	BH9M_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.009	SE182724.010	SE182724.011	SE182724.012	SE182724.014
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH10M_0.4-0.5
			SOIL
			15/8/2018
PARAMETER	UOM	LOR	SE182724.016
Asbestos Detected	No unit	-	No
Estimated Fibres*	%w/w	0.01	<0.01

VOCs in Water [AN433] Tested: 17/8/2018

			QR1
			WATER
			15/8/2018
PARAMETER	UOM	LOR	SE182724.022
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 17/8/2018

			QR1
			WATER
			- 15/8/2018
PARAMETER	UOM	LOR	SE182724.022
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

ANALYTICAL RESULTS

SE182724 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 17/8/2018

			QR1
			WATER -
			15/8/2018
PARAMETER	UOM	LOR	SE182724.022
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C36	µg/L	450	<450
TRH C10-C40	µg/L	650	<650
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60

ANALYTICAL RESULTS

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 20/8/2018

			QR1
			WATER
	101		- 15/8/2018
PARAMETER	UOM	LOR	SE182724.022
Arsenic, As	µg/L	1	<1
Cadmium, Cd	μg/L	0.1	<0.1
Chromium, Cr	μg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	µg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 17/8/2018

			QR1
			WATER
			15/8/2018
PARAMETER	UOM	LOR	SE182724.022
Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below:
	ESP < 6% non-sodic ESP 6-15% sodic ESP >15% strongly sodic
	Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <u>http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</u>

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 198566

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E23915, Waterloo
Number of Samples	1 Soil
Date samples received	16/08/2018
Date completed instructions received	16/08/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	23/08/2018			
Date of Issue	21/08/2018			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals

Steven Luong, Senior Chemist

Authorised By

Jacinta Hurst, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		198566-1
Your Reference	UNITS	QT1
Date Sampled		16/08/2018
Type of sample		Soil
Date extracted	-	17/08/2018
Date analysed	-	20/08/2018
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	97

svTRH (C10-C40) in Soil		
Our Reference		198566-1
Your Reference	UNITS	QT1
Date Sampled		16/08/2018
Type of sample		Soil
Date extracted	-	17/08/2018
Date analysed	-	18/08/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10 -C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	108

Acid Extractable metals in soil		
Our Reference		198566-1
Your Reference	UNITS	QT1
Date Sampled		16/08/2018
Type of sample		Soil
Date prepared	-	17/08/2018
Date analysed	-	17/08/2018
Arsenic	mg/kg	6
Cadmium	mg/kg	<0.4
Chromium	mg/kg	10
Copper	mg/kg	15
Lead	mg/kg	26
Mercury	mg/kg	0.1
Nickel	mg/kg	4
Zinc	mg/kg	110

Moisture		
Our Reference		198566-1
Your Reference	UNITS	QT1
Date Sampled		16/08/2018
Type of sample		Soil
Date prepared	-	17/08/2018
Date analysed	-	20/08/2018
Moisture	%	11

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			17/08/2018	[NT]		[NT]	[NT]	17/08/2018	
Date analysed	-			20/08/2018	[NT]		[NT]	[NT]	20/08/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	76	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	76	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	72	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	73	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	72	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	81	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	78	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	99	[NT]		[NT]	[NT]	96	
Client Reference: E23915, Waterloo

QUALITY CO		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			17/08/2018	[NT]		[NT]	[NT]	17/08/2018	
Date analysed	-			18/08/2018	[NT]		[NT]	[NT]	17/08/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	113	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	104	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	90	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	113	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	104	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	90	
Surrogate o-Terphenyl	%		Org-003	117	[NT]	[NT]	[NT]	[NT]	113	[NT]

Client Reference: E23915, Waterloo

QUALITY CONT	Duplicate				Spike Re	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			17/08/2018	[NT]		[NT]	[NT]	17/08/2018	
Date analysed	-			17/08/2018	[NT]		[NT]	[NT]	17/08/2018	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	110	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	105	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	111	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	101	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	

Client Reference: E23915, Waterloo

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	I Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Nater Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS						
Contact	Chris Sordy	Manager	Huong Crawford						
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental						
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015						
Telephone Facsimile Email	61 2 95160722 (Not specified) christopher.sordy@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com						
Project Order Number Samples	E23915-E02 - 242-244 Young St Waterloo E23915-E02 7	SGS Reference Date Received Date Reported	SE183173 R0 28/8/2018 4/9/2018						

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

TRH/PAH- The Limit of Reporting (LOR) has been raised due to interferences from the sample matrix.

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

lus

Huong Crawford Production Manager

Teresa Nguyen Organic Chemist

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SE183173 R0

VOCs in Water [AN433] Tested: 31/8/2018

ANALTECONTO <th< th=""><th></th><th></th><th></th><th>BH1M-1</th><th>BH9M-1</th><th>BH10M-1</th><th>GW-QD1</th><th>BHR-1</th></th<>				BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
Advance<				WATER	WATER	WATER	WATER	WATER
Accord processorAction processorActio				24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
numberppppdefdefs	PARAMETER		0.5	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
monomemodel <t< td=""><td></td><td>ug/l</td><td>0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td></t<>		ug/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
and subsp1qqq <t< td=""><td>Ethylbenzene</td><td>ug/l</td><td>0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td></t<>	Ethylbenzene	ug/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
math math	m/n-xylene	ug/l	1	<1	<1	<1	<1	<1
Non-box<		µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
monome mat mat<	Total Xvlenes	ug/l	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
mathem pat pat<		ug/l	3	<3	<3	<3	<3	<3
AndAAAAAACheenshow,µAAAAAAAACheenshow,µAA	Naphthalene	ua/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
AnomeniaAdd	Dichlorodifluoromethane (CFC-12)	ua/L	5	<5	<5	<5		-
non-antionantnon-an	Chloromethane	ua/L	5	<5	<5	<5	-	-
Banemata Ball Add A	Vinvl chloride (Chloroethene)	ug/L	0.3	<0.3	<0.3	<0.3	-	-
Discontanto Add Add <th< td=""><td>Bromomethane</td><td>ua/L</td><td>10</td><td><10</td><td><10</td><td><10</td><td>-</td><td>-</td></th<>	Bromomethane	ua/L	10	<10	<10	<10	-	-
nd <td>Chloroethane</td> <td>ua/L</td> <td>5</td> <td><5</td> <td><5</td> <td><5</td> <td>_</td> <td>-</td>	Chloroethane	ua/L	5	<5	<5	<5	_	-
Abive Spreynends)ipitipitin<	Trichlorofluoromethane	µg/L	1	<1	<1	<1	-	-
biometryjpl6466464646464641.14dronomejpl0.540	Acetone (2-propanone)	µg/L	10	13	<10	<10	-	_
1.1.4ddouchamepk0.540.5 <td>lodomethane</td> <td>µg/L</td> <td>5</td> <td><5</td> <td><5</td> <td><5</td> <td>-</td> <td>-</td>	lodomethane	µg/L	5	<5	<5	<5	-	-
AryonithppL6.84.9.54	1,1-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Debioonellare (Methylare dioxide)ppl343434343434343Ally dihoralsppl2424242424311Ally dihoralsppl0.540.	Acrylonitrile	µg/L	0.5	<0.5	<0.5	<0.5	-	_
Aly dots/depd2QQQ <th< td=""><td>Dichloromethane (Methylene chloride)</td><td>µg/L</td><td>5</td><td><5</td><td><5</td><td><5</td><td>-</td><td>-</td></th<>	Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	<5	-	-
Chebendudideµql11<	Allyl chloride	µg/L	2	<2	<2	<2	-	-
nen-1 calcinomethaneupil0.54.05	Carbon disulfide	µg/L	2	<2	<2	<2	-	-
MBE (Methy-lent-buy relay)pp1292<	trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1.1-choronshame ipil 0.40 ipil ipil<	MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	<2	-	-
Vindexide yil init init init init init MEX channel yil init init init init init MEX channel yil init init init init init Bindencombane yil init init init init init Schulderphane yil init init init init init init 12 delatorphane yil init init init init init init 13 delatorphane yil init init init init init 14 delatorphane yil init init init init init 14 delatorphane yil init init init init init 12 delatorphane yil init init init init init init 12 delatorphane yil init init init<	1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
MEX (2>latanon) Ind is 12 definitionethem Ind Inds Inds <td>Vinyl acetate</td> <td>µg/L</td> <td>10</td> <td><10</td> <td><10</td> <td><10</td> <td>-</td> <td>-</td>	Vinyl acetate	µg/L	10	<10	<10	<10	-	-
upl0.640.5	MEK (2-butanone)	µg/L	10	<10	<10	<10	-	-
BronchoromehaneµpL0.60.40.50.	cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Olocom (TM)µpl0.50.6.50.6.50.0.50.0.50.0.52.2.dehorophanµpl0.50.4.50.0.50.0.50.0.50.0.50.0.51.3.dehorophanµpl0.50.4.50.4.50.0.5 <t< td=""><td>Bromochloromethane</td><td>µg/L</td><td>0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td>-</td><td>-</td></t<>	Bromochloromethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
22-dohoropopeipid </td <td>Chloroform (THM)</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td>-</td> <td>-</td>	Chloroform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
12-diolorothaneindi	2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1.1.1-th/horothaneµgl0.50.6.5	1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1.1-dicknorpopene µpl, 0.5 <0.5	1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
CarbonethanelinoideypL0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0	1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Ditromentaneµgl0.5<0.5<0.65<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5 <td>Carbon tetrachloride</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td>-</td> <td>-</td>	Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5	-	-
12-dicklopropaneµgl0.5<0.5<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<0.6<	Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Ticklorozenter (Tricklorozentymer, TCE)µQL0.5<0.5<0.18<0.9<0.02nitogropaneµQL100<0.00	1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-httoppaneμpL100 <ft><ft><ft><ft><ft><ft><ft><ft><ft><ft< td=""><td>Trichloroethene (Trichloroethylene,TCE)</td><td>µg/L</td><td>0.5</td><td><0.5</td><td><0.5</td><td>1.8</td><td>-</td><td>-</td></ft<></ft></ft></ft></ft></ft></ft></ft></ft></ft>	Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	<0.5	1.8	-	-
Bromodichioromethane (THM)µpl0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5 <td>2-nitropropane</td> <td>µg/L</td> <td>100</td> <td><100</td> <td><100</td> <td><100</td> <td>-</td> <td>-</td>	2-nitropropane	µg/L	100	<100	<100	<100	-	-
MBK (4-methyl-2-pentanone) µg/L 5 refs re	Bromodichloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
cis-1,3-cichloropropene yp/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	<5	-	-
trans-13-dichloropropene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1_2trichtoreethane µg/L 0.5 <0.5	trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichoropropane µµL 0.5 6<0.5	1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Disromechioremetinine (HM) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Z-hexanone (MBK) µg/L 0.5 <	Dibromochloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
International relation jupic 0.5 0.6.5		µg/L	0.5	<0.5	<0.5	<0.5	-	-
Initial constrained of a constrain	Tetrachloroethene (Perchloroethylene PCE)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Interference pg/L 0.5 0.50	1.1.1.2-tetrachloroethane	ру, с ug/l	0.5	<0.5	<0.5	<0.5		
Brondom (THM) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Chlorobenzene	μα/L	0.5	<0.5	<0.5	<0.5	-	_
List of the sector of	Bromoform (THM)	µa/L	0.5	<0.5	<0.5	<0.5	_	_
No. in the second sec	cis-1,4-dichloro-2-butene	μα/L	1	<1	<1	<1	-	_
1,1,2,2-tetrachloropetane µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichloropropane µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,4-dichloro-2-butene μg/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1,2,3-trichloropropane	- μg/L	0.5	<0.5	<0.5	<0.5	-	-
	trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-

SE183173 R0

VOCs in Water [AN433] Tested: 31/8/2018 (continued)

			BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
				MATED	WATED		
			WATER -	-	-	- WATER	-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
Isopropylbenzene (Cumene)	µg/L	0.5	0.6	<0.5	<0.5	-	-
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	-	-
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Total VOC	µg/L	10	20	<10	<10	-	-

SE183173 R0

VOCs in Water [AN433] Tested: 31/8/2018 (continued)

			GWQTB1	GWQTS1
			WATER -	WAIER -
			24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.006	SE183173.007
Benzene	µg/L	0.5	<0.5	[96%]
Toluene	µg/L	0.5	<0.5	[96%]
Ethylbenzene	µg/L	0.5	<0.5	[93%]
m/p-xylene	µg/L	1	<1	[88%]
o-xylene	µg/L	0.5	<0.5	[87%]
Total Xylenes	µg/L	1.5	<1.5	-
Total BTEX	µg/L	3	<3	-
Naphthalene	µg/L	0.5	<0.5	-
Dichlorodifluoromethane (CFC-12)	µg/L	5	-	-
Chloromethane	µg/L	5	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	-	-
Bromomethane	µg/L	10	-	-
Chloroethane	µg/L	5	-	-
Trichlorofluoromethane	µg/L	1	-	-
Acetone (2-propanone)	µg/L	10	-	-
Iodomethane	µg/L	5	-	-
1,1-dichloroethene	µg/L	0.5	-	-
Acrylonitrile	µg/L	0.5	-	-
Dichloromethane (Methylene chloride)	µg/L	5	-	-
Allyl chloride	µg/L	2	-	-
Carbon disulfide	µg/L	2	-	-
trans-1,2-dichloroethene	µg/L	0.5	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	-	-
1,1-dichloroethane	µg/L	0.5	-	-
Vinyl acetate	µg/L	10	-	-
MEK (2-butanone)	µg/L	10	-	-
cis-1,2-dichloroethene	µg/L	0.5	-	-
Bromochloromethane	µg/L	0.5	-	-
Chloroform (THM)	µg/L	0.5	-	-
2,2-dichloropropane	µg/L	0.5	-	-
1,2-dichloroethane	µg/L	0.5	-	-
1,1,1-trichloroethane	µg/L	0.5	-	-
1,1-dichloropropene	µg/L	0.5	-	-
Carbon tetrachloride	µg/L	0.5	-	-
Dibromomethane	µg/L	0.5	-	-
1,2-dichloropropane	µg/L	0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	-	-
2-nitropropane	µg/L	100	-	-
Bromodichloromethane (THM)	µg/L	0.5	-	-
MIBK (4-methyl-2-pentanone)	µg/L	5	-	-
cis-1,3-dichloropropene	µg/L	0.5	-	-
trans-1,3-dichloropropene	µg/L	0.5	-	-
1,1,2-trichloroethane	µg/L	0.5	-	-
1,3-dichloropropane	µg/L	0.5	-	-
Dibromochloromethane (THM)	µg/L	0.5	-	-
2-hexanone (MBK)	µg/L	5	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	-	-
Chlorobenzene	µg/L	0.5	-	-
Bromoform (THM)	µg/L	0.5	-	-
cis-1,4-dichloro-2-butene	µg/L	1	-	-
Styrene (Vinyl benzene)	µg/L	0.5	-	-
1,1,2,2-tetrachloroethane	µg/L	0.5	-	-
1,2,3-trichloropropane	µg/L	0.5	-	-
trans-1,4-dichloro-2-butene	µg/L	1	-	-

SE183173 R0

VOCs in Water [AN433] Tested: 31/8/2018 (continued)

			GWQTB1	GWQTS1
			WATER	WATER
			24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.006	SE183173.007
Isopropylbenzene (Cumene)	µg/L	0.5	-	-
Bromobenzene	µg/L	0.5	-	-
n-propylbenzene	µg/L	0.5	-	-
2-chlorotoluene	µg/L	0.5	-	-
4-chlorotoluene	µg/L	0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	-	-
tert-butylbenzene	µg/L	0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	-	-
sec-butylbenzene	µg/L	0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	-	-
p-isopropyltoluene	µg/L	0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	-	-
n-butylbenzene	µg/L	0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	-	-
Hexachlorobutadiene	µg/L	0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	-	-
Total VOC	µg/L	10	-	-

SE183173 R0

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 31/8/2018

			BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
			WATER	WATER	WATER	WATER	WATER
				-	-	-	-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
TRH C6-C9	µg/L	40	150	<40	<40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	160	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	160	<50	<50	<50	<50

SE183173 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 30/8/2018

			BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
			WATER	WATER	WATER	WATER	WATER
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
TRH C10-C14	µg/L	50	170	<50	<50	<50	<50
TRH C15-C28	µg/L	200	<400↑	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<400↑	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<400↑	<200	<200	<200	<200
TRH >C10-C16	µg/L	60	190	<60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<1000↑	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<1000↑	<500	<500	<500	<500
TRH C10-C36	µg/L	450	<900↑	<450	<450	<450	<450
TRH C10-C40	µg/L	650	<1300↑	<650	<650	<650	<650
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	190	<60	<60	<60	<60

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 30/8/2018

			BH1M-1	BH9M-1	BH10M-1
			WATED	14/4750	MATED
			WATER	WATER -	-
			24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003
Naphthalene	µg/L	0.1	<0.2↑	<0.1	<0.1
2-methylnaphthalene	μg/L	0.1	<0.2↑	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.2↑	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.2↑	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.2↑	<0.1	<0.1
Fluorene	µg/L	0.1	<0.2↑	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.2↑	<0.1	<0.1
Anthracene	μg/L	0.1	<0.2↑	<0.1	<0.1
Fluoranthene	µg/L	0.1	0.2	0.1	<0.1
Pyrene	μg/L	0.1	0.3	0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.2↑	<0.1	<0.1
Chrysene	µg/L	0.1	<0.2↑	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.2↑	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.2↑	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.2↑	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.2↑	<0.1	<0.1
Dibenzo(ah)anthracene	μg/L	0.1	<0.2↑	<0.1	<0.1
Benzo(ghi)perylene	μg/L	0.1	<0.2↑	<0.1	<0.1
Total PAH (18)	µg/L	1	2	<1	<1

pH in water [AN101] Tested: 29/8/2018

			BH1M-1	BH9M-1	BH10M-1
			WATER	WATER	WATER
			24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003
pH**	No unit	-	6.3	7.2	5.0

Conductivity and TDS by Calculation - Water [AN106] Tested: 29/8/2018

			BH1M-1	BH9M-1	BH10M-1
			WATER	WATER	WATER
			24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003
Conductivity @ 25 C	µS/cm	2	880	850	290

Total Phenolics in Water [AN289] Tested: 3/9/2018

			BH1M-1	BH9M-1	BH10M-1
			WATER	WATER	WATER
			24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003
Total Phenols	mg/L	0.05	<0.05	<0.05	<0.05

Metals in Water (Dissolved) by ICPOES [AN320] Tested: 30/8/2018

			BH1M-1	BH9M-1	BH10M-1
			WATER	WATER	WATER
			24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003
Total Hardness by Calculation	mg CaCO3/L	5	330	240	25

SE183173 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 30/8/2018

			BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
			WATER	WATER	WATER	WATER	WATER
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
Arsenic, As	ua/L	1	6	3	<1	4	<1
	10			U			
Cadmium, Cd	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	3	<1	<1	<1	<1
			-				
Copper, Cu	µg/L	1	85	2	65	54	<1
Lead, Pb	µg/L	1	3	1	2	3	<1
				•	-		
Nickel, Ni	µg/L	1	3	<1	2	2	<1
Zinc, Zn	µg/L	5	110	10	92	66	<5
AL		-					
Aluminium, Al	µg/L	5	59	29	15	-	-

SE183173 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 30/8/2018

			BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
			WATER	WATER	WATER	WATER	WATER
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

 NATA accreditation does not cover the performance of this service.
 Indicative data, theoretical holding time exceeded. Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM LOR ↑↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 199432

Client Details	
Client	El Australia
Attention	David Rizkalla
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	<u>E23915.E02</u>
Number of Samples	1 Water
Date samples received	28/08/2018
Date completed instructions received	28/08/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	04/09/2018
Date of Issue	03/09/2018
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Jaimie Loa-Kum-Cheung, Senior Chemist Jeremy Faircloth, Organics Supervisor Steven Luong, Senior Chemist

Authorised By

Jacinta Hurst, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		199432-1
Your Reference	UNITS	QT-1-GW
Date Sampled		24/08/2018
Type of sample		Water
Date extracted	-	29/08/2018
Date analysed	-	30/08/2018
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	100
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	97

svTRH (C10-C40) in Water		
Our Reference		199432-1
Your Reference	UNITS	QT-1-GW
Date Sampled		24/08/2018
Type of sample		Water
Date extracted	-	02/09/2018
Date analysed	-	03/09/2018
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	70

HM in water - dissolved		
Our Reference		199432-1
Your Reference	UNITS	QT-1-GW
Date Sampled		24/08/2018
Type of sample		Water
Date prepared	-	29/08/2018
Date analysed	-	29/08/2018
Arsenic-Dissolved	µg/L	3
Cadmium-Dissolved	µg/L	<0.1
Chromium-Dissolved	µg/L	<1
Copper-Dissolved	µg/L	4
Lead-Dissolved	µg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	μg/L	<1
Zinc-Dissolved	µg/L	5

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			29/08/2018	[NT]		[NT]	[NT]	29/08/2018	
Date analysed	-			30/08/2018	[NT]		[NT]	[NT]	30/08/2018	
TRH C ₆ - C ₉	µg/L	10	Org-016	<10	[NT]		[NT]	[NT]	123	
TRH C ₆ - C ₁₀	µg/L	10	Org-016	<10	[NT]		[NT]	[NT]	123	
Benzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	125	
Toluene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	128	
Ethylbenzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	120	
m+p-xylene	µg/L	2	Org-016	<2	[NT]		[NT]	[NT]	122	
o-xylene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	120	
Naphthalene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	105	[NT]		[NT]	[NT]	107	
Surrogate toluene-d8	%		Org-016	96	[NT]		[NT]	[NT]	99	
Surrogate 4-BFB	%		Org-016	95	[NT]		[NT]	[NT]	96	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			02/09/2018	[NT]		[NT]	[NT]	02/09/2018	
Date analysed	-			03/09/2018	[NT]		[NT]	[NT]	03/09/2018	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	113	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	100	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	118	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	113	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	100	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	118	
Surrogate o-Terphenyl	%		Org-003	81	[NT]	[NT]	[NT]	[NT]	96	[NT]

QUALITY CONTROL: HM in water - dissolved						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			29/08/2018	[NT]		[NT]	[NT]	29/08/2018	
Date analysed	-			29/08/2018	[NT]		[NT]	[NT]	29/08/2018	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	96	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	90	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	107	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Notar Cuidalinan recommand that Thermotolerant Caliform, Easaal Enterganesi, & E. Cali lavala are loss than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

APPENDIX I QA/QC Assessment

11 QUALITY CONTROL PROGRAM

I1.1 INTRODUCTION

For the purpose of assessing the quality of data presented in this Contaminant Delineation Report, EI collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed internal QC samples. Details of the field and laboratory QC samples, with the allowable data acceptance ranges are presented in **Table I-1**.

QA/QC Measures	Data Quality Indicators
Precision – A quantitative measure of the variability (or reproducibility) of data	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:
	Results are less than 10 times the limits of reporting (LOR);
	Results are less than 20 times the LOR and the RPD is less than 50%; or
	Heterogeneous materials or volatile compounds are encountered.
Accuracy – A quantitative	Data accuracy would be assessed through the analysis of:
reported data to the "true" value	Method blanks, which are analysed for the analytes targeted in the primary samples;
	Matrix spike and matrix spike duplicate sample sets;
	Laboratory control samples; and
	Calibration of instruments against known standards.
Representativeness – The confidence (expressed	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:
qualitatively) that data are representative of each medium present onsite	Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts;
	Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and
	The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).

Table I-1 Sampling Data Quality Indicators

QA/QC Measures	Data Quality Indicators
Completeness – A measure of the amount of useable data from	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:
a data collection activity	Standard operating procedures (SOPs) for sampling protocols were adhered to; and
	Copies of all COC documentation are presented, reviewed and found to be properly completed.
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity.
event	In addition the data will be collected by experienced samplers and NATA- accredited laboratory methodologies will be employed in all laboratory testing programs.

I1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

 C_{O} = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

I2 FIELD QA/QC DATA EVALUATION

The field quality assurance/quality control (QA/QC) soil and groundwater samples collected during the investigations were as follows:

- Blind field duplicates;
- Inter-laboratory duplicates;
- Trip blanks;
- Trip spikes; and
- Rinsate blanks.

Analytical results for tested soil and groundwater QA/QC samples, including calculated RPD values between primary and duplicate samples, are presented in **Table I-2** and **Table I-3**, respectively.

12.1 SOIL INVESTIGATION & SOIL VALIDATION

I2.1.1 Blind Field Duplicates

One blind field duplicate (BFD) soil sample were collected in total, as follows:

• Sample QD1 was collected from the primary sample BH1M_0.3-0.4 on 15 August 2018.

The preparation of the BFD samples involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. BFD soil sample was analysed for TRHs, BTEX, and selected heavy metals. Calculated RPD values were found to be within the Data Acceptance Criteria, with the exception of F2 (124.32%), F3 (144.37%), arsenic (115.79%), chromium (120.00%), copper (127.87%), lead (93.71%), mercury (116.98%), nickel (178.21%) and zinc (88.66%). These exceedances are not considered to be significant due to the heterogeneity of the fill. Duplicate samples for lead was identified to be higher than the primary sample, however, did not exceeded identified soil investigation criteria.

I2.1.2 Inter-Laboratory Duplicate

Sample QT1 was collected as an inter-laboratory duplicate (ILD) of the primary sample BH1M_0.3-0.4 on 7 May 2018. The preparation of the ILD sample was identical to the BFD sample, as described above, and was analysed for TRHs, BTEX, and selected heavy metals. The calculated RPD values were found to be within the Data Acceptance Criteria, with the exception of F2 (113.04%), F3 (171.43%), arsenic (85.71%), chromium (109.09%), copper (107.69%), lead (98.04%), mercury (123.08%) and nickel (174.60%). These exceedances are not considered to be significant due to the heterogeneity of the fill.

I2.1.3 Trip Blank

One trip blank (TB1) sample was prepared and analysed by the primary laboratory for BTEX. Analytical results for this sample were below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

I2.1.4 Trip Spike

One trip spike (TS1) sample was submitted to the primary laboratory for BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

I2.1.5 Rinsate Blank

One rinsate blank sample QR1 was submitted to the primary laboratory for TRHs, BTEX, and selected heavy metals analysis, the results for which were reported below laboratory LOR; therefore, it was concluded that decontamination procedures performed during the field works had been effective.

I2.2 GROUNDWATER INVESTIGATION

I2.2.1 Blind Field Duplicates

One groundwater BFD sample was collected, as follows:

• GW-QD1 was collected from the primary sample BH1M during fieldwork on 24 August 2018.

The preparation of BFD samples involved the decanting of the groundwater collected from the respective monitoring well into two separate groups of appropriately labelled sampling containers. Volumes were split equally between the groups of sampling bottles such that the sample contained in each individual bottle, contained a similar proportion of each water volume. Sample mixing did not occur prior to decanting, in order to preserve the concentrations of volatiles potentially present within the sample. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFDs were analysed for TRHs, BTEX, and selected heavy metals.

The RPD values calculated for all the analytes tested were found to be within the Data Acceptance Criteria (DAC), with the exception of copper (185.71%), lead (100.00%), mercury (66.67%) and zinc (147.37%). These exceedances are not considered to be significant due variation that occurs in heavy metal concentrations in urban areas.

I2.2.2 Inter-Laboratory Duplicate

One ILD sample was collected in total, as follows:

• GW-QT1 was collected from the primary sample BH1M during fieldwork on 24 August 2018.

The preparation of a groundwater ILD sample was identical to the BFD sample as described above and also analysed for TRHs, BTEX, and selected heavy metals. The RPD values calculated for the ILD samples were found to be within the Data Acceptance Criteria, with the exception of copper (66.67%) and zinc (66.67%). These exceedances are not considered to be significant due to the marginal RPD exceedances and the concentration for copper and zinc duplicates were less than ten times the laboratory detection limit.

I2.2.3 Trip Blanks

One trip blank sample (GWTB1), prepared by the primary laboratory, was analysed for BTEX by the primary laboratory during groundwater testing. TB results were reported below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

I2.2.4 Trip Spikes

One TS sample (GWTS1) was submitted to the primary laboratory for BTEX analysis, the results for which were all reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

I2.2.5 Rinsate Blanks

One rinsate blank sample (BHR-1) were submitted to the primary laboratory for TRHs, BTEX and selected heavy metals analyses. Analytical results were reported below the laboratory LOR for all analytes. In view of this finding it was concluded that decontamination procedures performed during the field works had been effective.

12.4 ASSESSMENT OF FIELD QA/QC DATA

All samples were classified in the field with respect to soil/fill characteristics and any observable signs of contamination based on visual and odour assessment, in regards to soil and groundwater.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data EI considered the field QA/QC programme carried out during the investigations to be appropriate and the results to be acceptable.

Table H-2 RPD QC for soil

	TRH BTEX				Heavy Metals												
Sample identification	Description	۴1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory Dup	ntra-laboratory Duplicates - Soil Validation																
BH1M_0.3-0.4	Fill	<25	180	1300	<120	<0.1	<0.1	<0.1	<0.3	15	0.5	34	50.0	76.0	0.42	59	140
QD1	BFD of BH1M_0.3-0.4	<25	42	210	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	8.5	11.0	210	0.11	3.4	54
	RPD	0.00	124.32	144.37	0.00	0.00	0.00	0.00	0.00	115.79	50.00	120.00	127.87	93.71	116.98	178.21	88.66
Inter-laboratory Dup	licate - Soil Validation																
BH1M_0.3-0.4	Fill	<25	180	1300	<120	<0.1	<0.1	<0.1	<0.3	15	0.5	34	50	76	0.42	59	140
QT1	ILD of BH1M_0.3-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	6	<0.4	10	15	26	0.1	4	110
	RPD	0.00	113.04	171.43	NA	NA	NA	NA	NA	85.71	22.22	109.09	107.69	98.04	123.08	174.60	24.00
Trip Blank/Trip Spik	е																
TB1	Sand	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
TS1	Sand	-	-	-	-	[86%]	[88%]	[80%]	[80%]	-	-	-	-	-	-	-	-
Rinsate/Rinsate Bla	nks																
QR1	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5

NOTE: All results are reported in mg/kg (soil) or μ g/L (water)

RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005) RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Table H-3 RPD QC for groundwater

		TRH BTEX				Heavy Metals											
Sample identification	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory	Intra-laboratory Duplicate - Groundwater Investigation																
GW-QD1		<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	3	<0.1	<1	2	1	<1	<0.1	10
GW-QD1	BFD of BH9M-1	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	4	<0.1	<1	54	3	2	<0.1	66
	RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.57	0.00	0.00	185.71	100.00	66.67	0.00	147.37
Inter-laboratory	Duplicate - Groundwater Inv	vestigation															
GW-QD1		<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	3	<0.1	<1	2	1	<1	<0.1	10
GW-QD1	ILD of BH9M-1	<10	<50	<100	<100	<1	<1	<1	<3	3	<0.1	<1	4	<1	< 0.05	<1	5
	RPD	NA	NA	NA	NA	NA	NA	NA	NA	0.00	0.00	0.00	66.67	0.00	NA	NA	66.67
Trip Blank/Trip	Spike																
GWTB1	De-ionised water	NS	NS	NS	NS	<0.5	<0.5	<0.5	<1.5	NS	NS	NS	NS	NS	NS	NS	NS
GWTS1	De-ionised water	NS	NS	NS	NS	[96%]	[96%]	[93%]	[88%]	NS	NS	NS	NS	NS	NS	NS	NS
Rinsate/Rinsate	Blanks																
BHR-1	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5

NOTE: All results are reported in mg/kg (soil) or µg/L (water)

66.67

RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005)

66.67 RPD exceeds 30-50% range referenced from AS4482.1 (2005)

I3 LABORATORY QA/QC

I3.1 LABORATORY ACCREDITATION

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy (**Appendix J**), respective tests would be accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate. The laboratory QA/QC reports are included in **Appendix J**.

I3.2 SAMPLE HOLDING TIMES

Sample holding times were within the laboratory DQOs, which were consistent with standard environmental protocols as tabulated in **Appendix J**, **Tables QC1** and **QC2**.

I3.3 TEST METHODS AND PRACTICAL QUANTITATION LIMITS (PQLS)

Practical Quantitation Limits for all tested parameters during the assessment of soils and groundwater are presented in Appendix J, Tables QC3 and QC4, with the exception of samples with the following job;

• SE183173 (Groundwater Samples) – 3 samples for pH in water.

I3.4 METHOD BLANKS

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

I3.5 LABORATORY DUPLICATE SAMPLES

The Laboratory Duplicate Samples (LDS) for the analysis batches showed calculated RPDs that were within acceptable ranges and conformed to the DAC, with the exception of samples within the following job:

• SE182724 (Soil Samples) – three samples for total recoverable metals.

I3.6 LABORATORY CONTROL SAMPLES

The Laboratory Control Samples for the analysis batches were within acceptable ranges and conformed to the DAC.

I3.7 MATRIX SPIKES

All matrix spikes for the respective sample batches were within acceptable ranges and conformed to the DAC, with the exception of samples within the following job:

• SE182724 (Soil Samples) – one sample for mercury, three samples for total recoverable metals and 3 samples for TRH.

I3.8 SURROGATE

Recovery results for all surrogate samples conformed to the DAC.

I3.9 CONCLUDING REMARK

Based on the laboratory QA/QC results EI considers that although one discrepancy was identified, which was attributed to the non-homogenous nature of the submitted sample, the data generally confirms that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

APPENDIX J Laboratory QA/AC Policies and DQOs

SGS Environmental Services is accredited by NATA for Chemical Testing (Reg.No.2562) and Quality System compliance to ISO/IEC 17025. The QC parameters contained within are designed to meet NEPM 1999 requirements.

Quality Control samples included in any analytical run are listed below.

Reagent/Analysis Blank (BLK) Method Blank (MB)	Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. A reagent blank is prepared and analysed with every batch of samples plus with each new batch of solvent prior to use.
Sample Matrix Spike (MS) & Matrix Spike Duplicate (MSD)	Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and <u>prior to the extraction/digestion procedure</u> . They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water may be used. A duplicate spiked sample is analysed at least every 20 samples.
Surrogate Spike (SS)	At least one but up to three surrogate compounds are added to all samples requiring analysis for organics prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Where possible they are surrogate compounds recommended by the USEPA.
Control Matrix Spike (CMS)	To ensure spike recoveries can be determined for every batch of samples a control matrix is spiked with identical concentrations of target analyte(s) and then analysed. These results allow recoveries to be determined in the event that the matrix spikes are unusable (eg. matrix spikes performed on heavily contaminated samples). These are analysed at least every 20 samples.
Internal Standard (IS)	Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Where possible they are standard compounds recommended by the USEPA.
Lab Duplicates (D)	A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.
Lab Control Standards/Samples (LCS)	Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity. Thereafter they are analysed at least every one in 20 samples plus at the end of each analytical run. This data is not reported.
Continuous Calibration Verification (CCV) or	A calibration check standard or CCV and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift.
Calibration Check Standard & Blank	Calibration Standards are checked old versus new with a criteria of $\pm 10\%$

Quality Assurance Programs are listed below:

Statistical analysis of Quality Control data (SQC)	Quality control data is plotted on control charts using the APHA procedure with warning and control limits at 2 and 3 standard deviations respectively. See also QMS Procedure "Statistical Quality Control".						
Certified Reference Materials (CRM/SRM)	Certified Reference Materials and Standards are regularly analysed. These materials/standards have certified reference values for various parameters.						
Proficiency Testing	Regular proficiency test samples are analysed by our laboratories. SGS Environmental participates in a number of programs. Results and proficiency status are compiled and sent to participating laboratory post data interpretation. Failure to comply with acceptable values result in further investigations.						
Inter-laboratory & Intra- laboratory Testing	SGS Environmental Services has schedules in the Quality Systems to participate in Inter/Intra laboratory testing conducted internally and by other parties.						
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all inorganic tests. All recoveries are to be reported to 3 significant figures.	 Failure to meet the internal acceptance criteria will result in sample batch repeats dependent upon investigation outcomes. For data to be accepted: Inorganics (water samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab Duplicates RPD to be <15%*. Note: If client <u>field</u> duplicates do not meet this criteria it may indicate heterogeneity and shall be noted on the data reports for QC samples. Sample (and if applicable Control) Matrix Spike⁴ Duplicate recovery RPD to be <30%. Where CRMs are used, results to be within ±2 standard deviations of the expected value. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab duplicate RPD to be <30%* for sample results greater than 10 times LOR. Sample Matrix Spike Duplicate (MS⁴/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). Where CRMs are used, results to be within ±2 standard deviations of the expected value. 						

	Organics
	 Volatile & extractable Reagent & Method Blanks must contain levels less than or equal to LOR.
	 The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]25%. Some analytes may have specific criteria.
	 Control Standards (LCS/CMS) and Certified Reference Materials (CRM) recoveries are to be within established control limits or as a default 60-140% unless compound specific limits apply.
	Retention times are to vary by no more than 0.2 min.
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria	• At least two of three routine level soil sample Surrogate Spike (SS) recoveries are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as acceptance criterion. Any recoveries outside these limits will have comment.
All recoveries are to be reported to 3 significant figures.	• Water sample Surrogates Spike (SS) recoveries are to be within 40- 130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion. Any recoveries outside these limits will have comment.
1.80.001	 Lab Duplicates (D) must have a RPD <30%*.
	 Sample Matrix Spike Duplicate (MS[#]/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D).

*Only if results are at least 10 times the LOR otherwise no acceptance criteria for RPD's apply. Application of more stringent criteria shall be applied for clean water sample from water boards and any other nominated client contracts. Nominal 10xLOR criteria are dropped to 5xLOR where specified. ^AMatrix do not readily equate to definitive recovery due to inherent matrix interferences and thus do not have recovery compliance values set. As a guide inorganic recoveries should be between 70-130% and for organics 60-130%

Batch Structure Summary

An analytical batch is nominally considered as 20 samples or smaller. As a standard template the following should be **used as a guide** according to the above Quality Control Types:

1	MB	16	UNK_DUP
2	STD1	17	MS
3	STD2	18	MS_DUP
4	STD3	19	UNK 11
5	LCS	20	UNK 12
6	BLK	21	UNK 13
7	UNK 1	22	UNK 14
8	UNK 2	23	UNK 15
9	UNK 3	24	UNK 16
10	UNK 4	25	UNK 17
11	UNK 5	26	UNK 18
12	UNK 6	27	UNK 19
13	UNK 7	28	UNK 20 (SS if applicable)
14	UNK 8	29	UNK_DUP
15	UNK 9	30	CCV
16	UNK 10 (SS if applicable)	31	CRM / SRM / CMS / LCS

Table QC1 - Containers, Preservation Requirements and Holding Times - Soil										
Parameter	Container	Preservation	Maximum Holding Time							
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months							
Mercury	Glass with Teflon Lid	Nil	28 days							
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days							
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days							
Phenols	Glass with Teflon Lid	4°C ¹	14 days							
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days							
Asbestos	Sealed Plastic Bag	Nil	N/A							

Table QC2 - Containers, Preservation Requirements and Holding Times - Water									
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time						
Heavy Metals 125mL Plastic		Field filtration 0.45µm HNO ₃ / 4°C	6 months						
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months						
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days						
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4ºC ¹	28 days						

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Analytical Parameters, PQLs and Methods - Soil											
Parameter	Unit	PQL	Method Reference								
Metals in Soil											
Arsenic - As ¹	mg / kg	1	USEPA 200.7								
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7								
Chromium - Cr ¹	mg / kg	1	USEPA 200.7								
Copper - Cu ¹	mg / kg	1	USEPA 200.7								
Lead - Pb ¹	mg / kg	1	USEPA 200.7								
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A								
Nickel - Ni ¹	mg / kg	1	USEPA 200.7								
Zinc - Zn ¹	mg / kg	1	USEPA 200.7								
Total Petroleum Hydrocarbons (TPHs) in Soil											
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260								
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000								
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000								
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000								
BTEX in Soil											
Benzene	mg / kg	1	USEPA 8260								
Toluene	mg / kg	1	USEPA 8260								
Ethylbenzene	mg / kg	1	USEPA 8260								
m & p Xylene	mg / kg	2	USEPA 8260								
o- Xylene	mg / kg	1	USEPA 8260								
0	ther Organic C	ontaminants ir	n Soil								
PAHs	mg / kg	0.05-0.2	USEPA 8270								
CHCs	mg / kg	1	USEPA 8260								
VOCs	mg / kg	1	USEPA 8260								
SVOCs	mg / kg	1	USEPA 8260								
OCPs	mg / kg	0.1	USEPA 8140, 8080								
OPPs	mg / kg	0.1	USEPA 8140, 8080								
PCBs	mg / kg	0.1	USEPA 8080								
Phenolics	mg / kg	5	APHA 5530								
	Asl	pestos									
Asbestos	mg / kg	Presence / Absence	AS4964-2004								

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method		
	Heavy	Metals		Chlorinated Hydrocarbons (CHCs)					
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B		
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B		
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B		
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B		
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B		
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B		
Copper - Cu	ug/L	1	USEPA 200.8	1,1,2-trichloroethane	μα/L	1	USEPA 8260B		
Lead - Pb	ua/L	1	USEPA 200.8	Hexachloroethane	ισ/L	10	USEPA 8270D		
Mercurv - Ha	ua/L	0.5	USEPA 7471A	Other CHCs	µа/L	1	USEPA 8260B		
Molvbdenum - Mo	ug/L	1	USEPA 200.8	Volatile Orga	nic Con	npounds	s (VOCs)		
Nickel - Ni	ug/L	1	USEPA 200.8	Aniline	ua/L	10	USEPA 8260B		
Selenium - Se	µg/=	1	USEPA 200.8	2.4-dichloroaniline	μα/l	10	USEPA 8260B		
Silver - Ag	µg/L	1	USEPA 200.8	3 4-dichloroaniline	μg/L	10	USEPA 8260B		
Tin (inorg.) - Sn	µg/∟ µg/l	1	USEPA 200.8	Nitrobenzene	μg/L μg/l	50	USEPA 8260B		
Nickel - Ni	µg/L	1	USEPA 200.8	2 <i>1</i> -dinitrotoluene	μg/L	50	USEPA 8260B		
\overline{Z}	µg/∟ ug/l	1		2,4-diminitiotoluene	µg/∟	50			
Total Petro	µg/∟ Ieum Hv	' drocarb	ons (TPHs)	Phenolic Compounds					
C_6 - C_9 fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041		
C ₄₀ -C ₄₄ fraction	uq/l	50	LISEPA 8000	2-chlorophenol	ua/l	10	USEPA 8041		
C_{15} - C_{28} fraction	µg/∟ ug/l	100	USEPA 8000	4-chlorophenol	μg/L μα/l	10	USEPA 8041		
C_{29} - C_{36} fraction	ug/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041		
20 00	BT	EX		2,4,6-trichlorophenol	ug/L	10	USEPA 8041		
Benzene	ug/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	ug/L	10	USEPA 8041		
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041		
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041		
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscella	aneous l	Paramet	ters		
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN		
Polyciclic Are	omatic H	lydrocal	rbons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C		
PAHs	ua/L	0.1	USEPA 8270	Salinity (TDS)	ma/L	1	APHA 2510		
Benzo(a)pyrene	ug/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+		
OrganoCl	hlorine F	Pesticide	es (OCPs)	OrganoPhosphate Pesticides (OPPs)					
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141		
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141		
DDT	μg/L	0.001	USEPA 8081	Diazinon	μg/L	0.01	USEPA 8141		
Dieldrin	μg/L	0.001	USEPA 8081	Dimethoate	μg/L	0.01	USEPA 8141		
Endosulfan	μg/L	0.001	USEPA 8081	Fenitrothion	μg/L	0.01	USEPA 8141		
Endrin	μg/L	0.001	USEPA 8081	Malathion	μg/L	0.01	USEPA 8141		
Heptachlor	μg/L	0.001	USEPA 8081	Parathion	μg/L	0.01	USEPA 8141		
Lindane	μg/L	0.001	USEPA 8081	Iemephos	μ g/L	0.01	USEPA 8141		
Toxaphene	μg/L	0.001	USEPA 8081	Polychlorin	ated Bip	ohenyls	(PCBs)		
				Individual PCBs	μg/L	0.01	USEPA 8081		

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

Table QC5 - QC Sample Data Acceptance Criteria									
QC Sample Type	Method of Assessment	Acceptable Range							
	Field QC								
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \text{ x} \frac{ X_1 - X_2 }{\text{mean}(X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL) 							
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>							
Laboratory prepared Trip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%							
	Laboratory QC								
Laboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample results > 10 LOR							
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)							
Matrix Spikes Laboratory Control Samples	% Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).							
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)							
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)							
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>							
Note: PQL - Laboratory Practic LOR = Limit of Reporting	al Quantitation Limit (PQL) or the minimum detection I	imit for a particular analyte.							

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAILS	
Contact	David Rizkalla	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	david.rizkallar@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23915 242-244 Young St Waterloo NSW	SGS Reference	SE182724 R0
Order Number	E23915	Date Received	16 Aug 2018
Samples	22	Date Reported	23 Aug 2018

COMMENTS _

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	3 items
Matrix Spike	Mercury in Soil	1 item
	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	3 items
	TRH (Total Recoverable Hydrocarbons) in Soil	3 items

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

Method: ME-(AU)-[ENV]AN312

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

inceable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and C	hangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) Method: ME-(AU)-[ENV]AN122									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH1M_1.2-1.3	SE182724.003	LB154426	15 Aug 2018	16 Aug 2018	12 Sep 2018	17 Aug 2018	12 Sep 2018	23 Aug 2018		
BH2_0.3-0.4	SE182724.006	LB154426	15 Aug 2018	16 Aug 2018	12 Sep 2018	17 Aug 2018	12 Sep 2018	23 Aug 2018		
BH8_1.7-1.8	SE182724.013	LB154426	15 Aug 2018	16 Aug 2018	12 Sep 2018	17 Aug 2018	12 Sep 2018	23 Aug 2018		
BH9M_1.8-1.9	SE182724.015	LB154426	15 Aug 2018	16 Aug 2018	12 Sep 2018	17 Aug 2018	12 Sep 2018	23 Aug 2018		
BH10M_1.7-1.8	SE182724.017	LB154426	15 Aug 2018	16 Aug 2018	12 Sep 2018	17 Aug 2018	12 Sep 2018	23 Aug 2018		
Fibre Identification in soil							Method:	ME-(AU)-IENVIAN602		

QC Ref Sample Name Extraction Due Analysis Due Analysed Sample No. Sampled Received Extracted BH1M 0.3-0.4 SE182724.001 LB154622 15 Aug 2018 16 Aug 2018 15 Aug 2019 21 Aug 2018 15 Aug 2019 23 Aug 2018 BH1M 0.5-0.6 SE182724 002 I B154622 15 Aug 2018 16 Aug 2018 15 Aug 2019 21 Aug 2018 15 Aug 2019 23 Aug 2018 BH2 0.1-0.2 SE182724.005 LB154622 15 Aug 2018 16 Aug 2018 15 Aug 2019 21 Aug 2018 15 Aug 2019 23 Aug 2018 BH3_0.2-0.3 LB154622 SE182724.007 15 Aug 2018 16 Aug 2018 15 Aug 2019 21 Aug 2018 15 Aug 2019 23 Aug 2018 BH4_0.2-0.3 SE182724.008 LB154622 15 Aug 2018 16 Aug 2018 15 Aug 2019 21 Aug 2018 15 Aug 2019 23 Aug 2018 BH5_0.1-0.2 SE182724.009 LB154622 16 Aug 2018 15 Aug 2019 15 Aug 2018 15 Aug 2019 21 Aug 2018 23 Aug 2018 BH6 0.2-0.3 SE182724.010 LB154622 15 Aug 2018 16 Aug 2018 15 Aug 2019 21 Aug 2018 15 Aug 2019 23 Aug 2018 BH7_0.3-0.4 SE182724.011 LB154622 15 Aug 2018 16 Aug 2018 15 Aug 2019 21 Aug 2018 15 Aug 2019 23 Aug 2018 SE182724.012 BH8 0.3-0.4 LB154622 15 Aug 2018 16 Aug 2018 21 Aug 2018 15 Aug 2019 23 Aug 2018 15 Aug 2019 BH9M 0.3-0.4 SE182724 014 I B154622 15 Aug 2018 16 Aug 2018 15 Aug 2019 21 Aug 2018 15 Aug 2019 23 Aug 2018 BH10M_0.4-0.5 SE182724.016 LB154622 15 Aug 2018 16 Aug 2018 15 Aug 2019 21 Aug 2018 15 Aug 2019 23 Aug 2018 Mercury (dissolved) in Water Method: ME-(AU)-IENVIAN311(Perth)/AN312 Analysed Sample Name Sampled Extraction Due Sample No. QC Ref Received Extracted Analysis Due QR1 SE182724.022 LB154385 15 Aug 2018 16 Aug 2018 12 Sep 2018 17 Aug 2018 12 Sep 2018 20 Aug 2018

Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH1M 0.3-0.4 SE182724.001 LB154680 15 Aug 2018 12 Sep 2018 12 Sep 2018 23 Aug 2018 16 Aug 2018 22 Aug 2018 BH1M 0.5-0.6 SE182724.002 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 BH1M_1.2-1.3 SE182724.003 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 BH1M 3.4-3.5 SE182724.004 LB154680 16 Aug 2018 12 Sep 2018 15 Aug 2018 12 Sep 2018 22 Aug 2018 23 Aug 2018 BH2 0.1-0.2 SE182724.005 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 BH2 0.3-0.4 SE182724.006 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 BH3 0.2-0.3 SE182724.007 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 BH4_0.2-0.3 SE182724.008 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 SE182724.009 LB154680 BH5_0.1-0.2 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 BH6_0.2-0.3 SE182724.010 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 BH7_0.3-0.4 SE182724.011 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 BH8_0.3-0.4 SE182724.012 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 SE182724.013 LB154680 BH8_1.7-1.8 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 12 Sep 2018 12 Sep 2018 SE182724.014 16 Aug 2018 22 Aug 2018 BH9M 0.3-0.4 LB154680 15 Aug 2018 23 Aug 2018 BH9M 1.8-1.9 SE182724.015 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 BH10M 0.4-0.5 SE182724.016 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 SE182724.017 BH10M_1.7-1.8 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 BH10M_2.4-2.5 SE182724.018 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 QD1 SE182724.019 LB154680 15 Aug 2018 16 Aug 2018 12 Sep 2018 22 Aug 2018 12 Sep 2018 23 Aug 2018 Moisture Content Method: ME-(AU)-IENVIAN002 Sample Name Analysis Due Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted BH1M_0.3-0.4 SE182724.001 LB154681 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 27 Aug 2018 22 Aug 2018 BH1M 0.5-0.6 SE182724.002 LB154681 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 27 Aug 2018 22 Aug 2018 29 Aug 2018 BH1M 1.2-1.3 SE182724.003 LB154681 15 Aug 2018 16 Aug 2018 22 Aug 2018 27 Aug 2018 22 Aug 2018 BH1M_3.4-3.5 SE182724.004 LB154681 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 27 Aug 2018 22 Aug 2018 BH2 0.1-0.2 SE182724.005 LB154681 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 27 Aug 2018 22 Aug 2018 BH2_0.3-0.4 SE182724.006 LB154681 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 27 Aug 2018 22 Aug 2018 SE182724.007 LB154681 BH3_0.2-0.3 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 27 Aug 2018 22 Aug 2018 BH4_0.2-0.3 SE182724.008 LB154681 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 27 Aug 2018 22 Aug 2018 BH5_0.1-0.2 SE182724.009 LB154681 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 27 Aug 2018 22 Aug 2018 BH6 0.2-0.3 SE182724.010 LB154681 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 27 Aug 2018 22 Aug 2018 BH7_0.3-0.4 SE182724.011 LB154681 16 Aug 2018 15 Aug 2018 29 Aug 2018 22 Aug 2018 27 Aug 2018 22 Aug 2018 BH8 0.3-0.4 SE182724.012 LB154681

16 Aug 2018

16 Aug 2018

29 Aug 2018

29 Aug 2018

22 Aug 2018

22 Aug 2018

27 Aug 2018

27 Aug 2018

15 Aug 2018

15 Aug 2018

LB154681

SE182724.013

Mercury in Soil

22 Aug 2018

22 Aug 2018

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued)

Moisture Content (continu	(beu						Method: I	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH9M_0.3-0.4	SE182724.014	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
QD1	SE182724.019	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
TS	SE182724.020	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
OC Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BURNA A A A A	05400704.044	10454070	45 4 0010	10 1	00 4	00.4	01 0-1 0010	00.0000

OP Pesticides in Soil							Method:	ME-(AU)-[ENV]AN4
QD1	SE182724.019	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
QD1	SE182724.019	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
PAH (Polynuclear Aromatic	Hydrocarbons) in Soil						Method: I	ME-(AU)-IENVIAN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Sampled QC Ref Analysed Sample Name Sample No. Received Extraction Due Extracted Analysis Due BH4 0.2-0.3 SE182724.008 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 LB154679 BH5_0.1-0.2 SE182724.009 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH6 0.2-0.3 SE182724.010 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH7_0.3-0.4 SE182724.011 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 15 Aug 2018 BH8 0.3-0.4 LB154679 SE182724.012 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 16 Aug 2018 BH8_1.7-1.8 SE182724.013 LB154679 01 Oct 2018 23 Aug 2018 15 Aug 2018 29 Aug 2018 22 Aug 2018 BH9M 0.3-0.4 SE182724.014 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH9M 1.8-1.9 SE182724.015 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH10M_0.4-0.5 SE182724.016 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH10M 1.7-1.8 SE182724.017 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH10M_2.4-2.5 SE182724.018 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 QD1 SE182724.019 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 Method: ME-(AU)-[ENVIAN420 PCBs in Soil Sample Name Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due BH1M_0.3-0.4 SE182724.001 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 SE182724.002 BH1M 0.5-0.6 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH1M 12-13 SE182724 003 I B154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH1M_3.4-3.5 SE182724.004 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH2 0.1-0.2 SE182724.005 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH2 0.3-0.4 SE182724.006 15 Aug 2018 22 Aug 2018 LB154679 16 Aug 2018 29 Aug 2018 01 Oct 2018 23 Aug 2018 BH3_0.2-0.3 SE182724.007 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH4 0.2-0.3 SE182724.008 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH5_0.1-0.2 SE182724.009 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 23 Aug 2018 BH6_0.2-0.3 LB154679 15 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 SE182724.010 16 Aug 2018 BH7 0.3-0.4 SE182724.011 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 SE182724.012 BH8_0.3-0.4 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH8 1.7-1.8 SE182724.013 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH9M_0.3-0.4 SE182724.014 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH9M 1.8-1.9 SE182724.015 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 23 Aug 2018 BH10M 0.4-0.5 SE182724.016 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 BH10M 1.7-1.8 SE182724.017 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 BH10M 2.4-2.5 SE182724.018 LB154679 15 Aug 2018 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 SE182724.019 LB154679 15 Aug 2018 QD1 16 Aug 2018 29 Aug 2018 22 Aug 2018 01 Oct 2018 23 Aug 2018 pH in soil (1:5) Method: ME-(AU)-IENVIAN101 Sample Name QC Ref Analysis Due Analysed Sample No. Sampled Received Extraction Due Extracted BH1M 1.2-1.3 SE182724.003 LB154726 15 Aug 2018 16 Aug 2018 22 Aug 2018 22 Aug 2018 23 Aug 2018 22 Aug 2018 BH2_0.3-0.4 SE182724.006 LB154726 15 Aug 2018 16 Aug 2018 22 Aug 2018 22 Aug 2018 23 Aug 2018 22 Aug 2018 BH8 1.7-1.8 SE182724.013 LB154726 15 Aug 2018 16 Aug 2018 22 Aug 2018 22 Aug 2018 23 Aug 2018 22 Aug 2018 SE182724.015 15 Aug 2018 22 Aug 2018 BH9M 1.8-1.9 LB154726 16 Aug 2018 22 Aug 2018 23 Aug 2018 22 Aug 2018 BH10M 1.7-1.8 SE182724.017 LB154726 15 Aug 2018 16 Aug 2018 22 Aug 2018 22 Aug 2018 23 Aug 2018 22 Aug 2018 Method: ME-(AU)-[ENV]AN040/AN320 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Analysis Due Sample Name Sample No. Sampled Analysed QC Ref Received Extraction Due Extracted BH1M_0.3-0.4 SE182724.001 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH1M 0.5-0.6 SE182724.002 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH1M_1.2-1.3 SE182724.003 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH1M 3.4-3.5 SE182724.004 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH2 0.1-0.2 SE182724.005 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH2_0.3-0.4 SE182724.006 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH3_0.2-0.3 LB154675 SE182724.007 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH4_0.2-0.3 SE182724.008 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH5 0.1-0.2 SE182724.009 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH6 0.2-0.3 SE182724.010 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH7_0.3-0.4 SE182724.011 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH8_0.3-0.4 SE182724.012 LB154675 11 Feb 2019 11 Feb 2019 15 Aug 2018 16 Aug 2018 22 Aug 2018 23 Aug 2018 BH8 1.7-1.8 SE182724.013 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH9M_0.3-0.4 SE182724.014 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018 BH9M 1.8-1.9 SE182724.015 LB154675 15 Aug 2018 16 Aug 2018 11 Feb 2019 22 Aug 2018 11 Feb 2019 23 Aug 2018

BH10M_0.4-0.5

SE182724.016

LB154675

15 Aug 2018

16 Aug 2018

11 Feb 2019

22 Aug 2018

11 Feb 2019

23 Aug 2018

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Eleme	nts in Soil/Waste Solids/Ma	terials by ICPOES (continued)				Method: ME-(AU)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH10M_1.7-1.8	SE182724.017	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
QD1	SE182724.019	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
Trace Metals (Dissolved)	in Water by ICPMS						Method:	ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE182724.022	LB154475	15 Aug 2018	16 Aug 2018	11 Feb 2019	20 Aug 2018	11 Feb 2019	21 Aug 2018

TRH (Total Recoverable H	lydrocarbons) in Soll						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
QD1	SE182724.019	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
TRH (Total Recoverable H	lydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE182724.022	LB154392	15 Aug 2018	16 Aug 2018	22 Aug 2018	17 Aug 2018	26 Sep 2018	22 Aug 2018

VOC's in Soil							Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	22 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	22 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
QD1	SE182724.019	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
TS	SE182724.020	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
тв	SE182724.021	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
VOCs in Water							Method: I	ME-(AU)-[ENV]AN433

Sample Name Sample No. QC Ref

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOCs in Water (continued	d)						Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE182724.022	LB154459	15 Aug 2018	16 Aug 2018	22 Aug 2018	17 Aug 2018	26 Sep 2018	21 Aug 2018
Volatile Petroleum Hydrod	carbons in Soil						Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	22 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	22 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
QD1	SE182724.019	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
TS	SE182724.020	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
ТВ	SE182724.021	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
Volatile Petroleum Hydrod	carbons in Water						Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Du <u>e</u>	Analysed
QR1	SE182724.022	LB154459	15 Aug 2018	16 Aug 2018	22 Aug 2018	17 Aug 2018	26 Sep 2018	21 Aug 2018

23/8/2018

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

OC Pesticides in Soil				Method: ME	-(AU)-[ENV]AN42
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1M 0.3-0.4	SE182724.001	%	60 - 130%	110
	BH1M 0.5-0.6	SE182724.002	%	60 - 130%	114
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	125
	BH3 0.2-0.3	SE182724.007	%	60 - 130%	126
	BH4 0.2-0.3	SE182724.008	%	60 - 130%	119
	BH5 0.1-0.2	SE182724.009	%	60 - 130%	119
	BH6 0.2-0.3	SE182724.010	%	60 - 130%	121
	BH7 0.3-0.4	SE182724.011	%	60 - 130%	120
	BH8 0.3-0.4	SE182724.012	%	60 - 130%	117
	BH9M 0.3-0.4	SE182724.014	%	60 - 130%	114
	BH10M 0.4-0.5	SE182724.016	%	60 - 130%	107
OP Pesticides in Soil				Method: ME	-(AU)-IENVIAN42
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	82
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	82
	BH2 0.1-0.2	SE182724.005	%	60 - 130%	80
	BH3 0.2-0.3	SE182724.007	%	60 - 130%	82
	BH4 0.2-0.3	SE182724.008	%	60 - 130%	78
	BH5 0.1-0.2	SE182724.009	%	60 - 130%	80
	BH6 0.2-0.3	SE182724.010	%	60 - 130%	78
	BH7 0.3-0.4	SE182724 011	%	60 - 130%	82
	BH8 0.3-0.4	SE182724 012	%	60 - 130%	78
	BH9M 0 3-0 4	SE182724.012	%	60 - 130%	76
	BH10M 0.4-0.5	SE182724.014	%	60 - 130%	88
d14-n-tempenyl (Surrogate)	BH1M_0.3-0.4	SE182724.010	%	60 - 130%	84
	BH1M_0.5-0.6	SE182724.001	%	60 - 130%	88
	BH2 0 1 0 2	SE182724.002	%	60 - 130%	84
	BH2 0 2 0 2	SE 192724.007	0/	60 130%	04
	BH4_0.2-0.3	SE182724.007	/6	60 - 130%	78
	BH5_0.1-0.2	SE182724.000	%	60 - 130%	78
		SE182724.009	/6	60 130%	90
	BH0_0.2-0.3	SE182724.010	/6	60 130%	04
	BH7_0.3-0.4	SE 102724.011	/0	60 130%	94
	BH0M 0 2 0 4	SE 102724.012	/0	60 130%	00
	BH3M_0.3-0.4	SE102724.014	/6	60 130%	00
PAH (Polynuclear Aromatic Hydrocarbone) in Soil	Diffom_0.4 0.0	02102124.010	70	Method: ME	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M 0.3-0.4	SE182724.001	%	70 - 130%	82
······································	BH1M 0.5-0.6	SE182724.002	%	70 - 130%	82
	BH1M 1.2-1.3	SE182724.003	%	70 - 130%	82
	BH1M 3.4-3.5	SE182724.004	%	70 - 130%	80
	BH2 0.1-0.2	SE182724.005	%	70 - 130%	80
	BH2 0.3-0.4	SE182724.006	%	70 - 130%	80
	BH3 0.2-0.3	SE182724.007	%	70 - 130%	82
	BH4 0.2-0.3	SE182724.008	%	70 - 130%	78
	BH5_0.1-0.2	SE182724 009	%	70 - 130%	80
	BH6.0.2-0.3	SE182724 010	%	70 - 130%	78
	BH7_0.3-0.4	SE182724 011	%	70 - 130%	82
	BH8 0.3-0.4	SE182724 012	%	70 - 130%	78
	BH8 17-18	SE182724 013	%	70 - 130%	76
	BH9M 0.3-0.4	SE182724 014	%	70 - 130%	76
	BH9M 1.8-1 9	SE182724.015	%	70 - 130%	84
	BH10M_0.4-0.5	SE182724.016	%	70 - 130%	88
	BH10M 1 7-1 8	SE182724.017	%	70 - 130%	86
	BH10M 2 4-2 5	SE182724.018	%	70 - 130%	82
d14-p-terphenyl (Surrogate)	BH1M 0.3-0.4	SE182724 001	%	70 - 130%	84
	BH1M_0.5-0.6	SE182724 002	%	70 - 130%	88
	BH1M 1 2-1 3	SE182724 003	%	70 - 130%	84
	BH1M 3 4-3 5	SE182724 004	%	70 - 130%	82
	BH2 0 1-0 2	SE182724.004		70 - 130%	84
	ע_0.1-0.2	JE 102724.000	/0	10-100/0	04

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d14-p-terphenyl (Surrogate)	BH2_0.3-0.4	SE182724.006	%	70 - 130%	82
	BH3_0.2-0.3	SE182724.007	%	70 - 130%	82
	BH4_0.2-0.3	SE182724.008	%	70 - 130%	78
	BH5_0.1-0.2	SE182724.009	%	70 - 130%	78
	BH6_0.2-0.3	SE182724.010	%	70 - 130%	80
	BH7_0.3-0.4	SE182724.011	%	70 - 130%	94
	BH8_0.3-0.4	SE182724.012	%	70 - 130%	80
	BH8_1.7-1.8	SE182724.013	%	70 - 130%	76
	BH9M_0.3-0.4	SE182724.014	%	70 - 130%	80
	BH9M_1.8-1.9	SE182724.015	%	70 - 130%	86
	BH10M_0.4-0.5	SE182724.016	%	70 - 130%	86
	BH10M_1.7-1.8	SE182724.017	%	70 - 130%	86
	BH10M_2.4-2.5	SE182724.018	%	70 - 130%	80
d5-nitrobenzene (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	70 - 130%	80
	BH1M_0.5-0.6	SE182724.002	%	70 - 130%	82
	BH1M_1.2-1.3	SE182724.003	%	70 - 130%	76
	BH1M_3.4-3.5	SE182724.004	%	70 - 130%	74
	BH2_0.1-0.2	SE182724.005	%	70 - 130%	82
	BH2_0.3-0.4	SE182724.006	%	70 - 130%	78
	BH3_0.2-0.3	SE182724.007	%	70 - 130%	78
	BH4_0.2-0.3	SE182724.008	%	70 - 130%	76
	BH5_0.1-0.2	SE182724.009	%	70 - 130%	76
	BH6_0.2-0.3	SE182724.010	%	70 - 130%	76
	BH7_0.3-0.4	SE182724.011	%	70 - 130%	80
	BH8_0.3-0.4	SE182724.012	%	70 - 130%	76
	BH8_1.7-1.8	SE182724.013	%	70 - 130%	76
	BH9M_0.3-0.4	SE182724.014	%	70 - 130%	74
	BH9M_1.8-1.9	SE182724.015	%	70 - 130%	80
	BH10M_0.4-0.5	SE182724.016	%	70 - 130%	78
	BH10M_1.7-1.8	SE182724.017	%	70 - 130%	78
	BH10M_2.4-2.5	SE182724.018	%	70 - 130%	74
PCBs in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	110
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	114
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	125
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	126
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	119
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	119
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	121
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	120
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	117
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	114
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	107
VOC's in Soil				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	84
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	100
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	73
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	77
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	71
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	74
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	74
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	88
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	90
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	73
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	91
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	122
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	118
	BH8_1.7-1.8 BH9M_0.3-0.4	SE182724.013 SE182724.014	%	60 - 130% 60 - 130%	118 105

23/8/2018

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

VOC's in Soil (continued)				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	91
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	92
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	101
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	79
	QD1	SE182724.019	%	60 - 130%	97
	TS	SE182724.020	%	60 - 130%	106
	ТВ	SE182724.021	%	60 - 130%	83
d4-1,2-dichloroethane (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	82
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	85
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	102
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	89
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	80
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	93
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	116
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	123
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	123
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	113
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	103
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	129
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	115
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	113
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	98
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	125
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	112
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	108
	QD1	SE182724.019	%	60 - 130%	115
	TS	SE182724.020	%	60 - 130%	124
	ТВ	SE182724.021	%	60 - 130%	100
d8-toluene (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	87
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	118
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	83
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	114
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	105
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	83
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	111
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	128
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	126
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	116
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	85
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	82
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	88
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	95
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	96
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	96
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	97
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	104
	QD1	SE182724.019	%	60 - 130%	97
	TS	SE182724.020	%	60 - 130%	101
	ТВ	SE182724.021	%	60 - 130%	90
Dibromofluoromethane (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	82
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	88
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	90
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	94
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	75
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	101
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	115
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	84
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	104
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	75
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	102
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	102

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

VOC's in Soli (continued)				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	BH8_1.7-1.8	SE182724.013	%	60 - 130%	85
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	97
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	98
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	89
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	107
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	105
	QD1	SE182724.019	%	60 - 130%	84
	TS	SE182724.020	%	60 - 130%	90
	ТВ	SE182724.021	%	60 - 130%	85
VOCs in Water				Method: M	E-(AU)-IENVIAN43
Parameter	Sample Name	Sample Number	Unite	Critoria	Recovery %
P al allieter	OP1	SE182724 022	011115	40 - 130%	05
d4-1 2-dichloroethane (Surrogate)	OP1	SE182724.022	0/_	40 - 130%	114
de toluene (Surrogate)	OP1	SE182724.022	70 0/_	40 - 130%	114
Dibromofluoromethane (Surrogate)		SE182724.022	70 0/_	40 - 130%	110
Dibionolidoronietriane (Gurrogate)	QILI	3E102724.022	70	40 - 130 %	113
Volatile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	84
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	100
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	73
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	77
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	71
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	74
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	74
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	88
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	90
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	73
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	91
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	122
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	118
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	105
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	91
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	92
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	101
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	79
	QD1	SE182724.019	%	60 - 130%	97
d4-1,2-dichloroethane (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	82
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	85
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	102
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	89
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	80
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	93
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	116
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	123
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	123
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	113
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	103
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	129
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	115
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	113
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	98
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	125
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	112
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	108
	QD1	SE182724.019	%	60 - 130%	115
d8-toluene (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	87
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	118
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	83
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	114
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	105

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Volatile Petroleum Hydrocarbons in Soll (continued)				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH2_0.3-0.4	SE182724.006	%	60 - 130%	83
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	111
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	128
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	126
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	116
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	85
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	82
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	88
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	95
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	96
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	96
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	97
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	104
	QD1	SE182724.019	%	60 - 130%	97
Dibromofluoromethane (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	82
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	88
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	90
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	94
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	75
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	101
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	115
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	84
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	104
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	75
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	102
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	102
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	85
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	97
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	98
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	89
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	107
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	105
	QD1	SE182724.019	%	60 - 130%	84
Volatile Petroleum Hydrocarbons in Water				Method: M	

· · · · · · · · · · · · · · · · · · ·					· · · ·
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE182724.022	%	40 - 130%	95
d4-1,2-dichloroethane (Surrogate)	QR1	SE182724.022	%	60 - 130%	114
d8-toluene (Surrogate)	QR1	SE182724.022	%	40 - 130%	111
Dibromofluoromethane (Surrogate)	QR1	SE182724.022	%	40 - 130%	119

METHOD BLANKS

SE182724 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

changeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)			Method: ME-(AU)-[ENV]AN122		
Sample Number	Parameter	Units	LOR	Result	
LB154426.001	Exchangeable Sodium, Na	mg/kg	2	0	
	Exchangeable Potassium, K	mg/kg	2	0	
	Exchangeable Calcium, Ca	mg/kg	2	0	
	Exchangeable Magnesium, Mg	mg/kg	2	0	
Mercury (dissolved) in Water			Method: ME-(AU)-[E	NVJAN311(Perth)/AN312	
Sample Number	Parameter	Units	LOR	Result	
LB154385.001	Mercury	mg/L	0.0001	<0.0001	

Mercury in Soil

Mercury in Soil			Met	hod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB154680.001	Mercury	mg/kg	0.05	<0.05
LB154680.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil				Metho	d: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB154679.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	107
OP Pesticides in Soil				Metho	d: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB154679.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2

Azinphos-methyl (Guthion)

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Sample Number Parameter

Surrogates

Method: ME-(AU)-[ENV]AN420 LOR

<0.2

84

86

mg/kg

%

%

Units

0.2

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH C10-C36 Total

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 LOR Sample Number Parameter Units Result LB154679.001 Naphthalene mg/kg 0.1 < 0.1 2-methylnaphthalene mg/kg 0.1 <0.1 <0.1 1-methylnaphthalene mg/kg 0.1 Acenaphthylene mg/kg 0.1 < 0.1 Acenaphthene 0.1 <0.1 mg/kg Fluorene 0.1 <0.1 mg/kg Phenanthrene <0.1 mg/kg 0.1 Anthracene mg/kg 0.1 <0.1 Fluoranthene 0.1 <0.1 mg/kg < 0.1 Pyrene mg/kg 0.1 mg/kg Benzo(a)anthracene 0.1 <0.1 Chrysene 0.1 <0.1 mg/kg <0.1 Benzo(a)pyrene mg/kg 0.1 Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 Dibenzo(ah)anthracene 0.1 <0.1 mg/kg Benzo(ghi)perylene mg/kg 0.1 < 0.1 Total PAH (18) 0.8 <0.8 mg/kg Surrogates 76 d5-nitrobenzene (Surrogate) % 2-fluorobiphenyl (Surrogate) % -84 d14-p-terphenyl (Surrogate) % 86 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb LOR Result Parameter Units LB154679.001 Arochlor 1016 mg/kg 0.2 < 0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 <0.2 mg/kg 0.2 Arochlor 1242 mg/kg 0.2 < 0.2 Arochlor 1248 mg/kg 0.2 <0.2 Arochlor 1254 0.2 <0.2 mg/kg Arochlor 1260 mg/kg 0.2 < 0.2 Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 0.2 <0.2 mg/kg Total PCBs (Arochlors) mg/kg 1 <1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) % 107 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units LOR Result LB154675.001 Arsenic, As mg/kg 2 1 Cadmium, Cd 0.3 <0.3 mg/kg 0.3 <0.3 Chromium, Cr mg/kg Copper, Cu mg/kg 0.5 <0.5 Nickel, Ni 0.5 <0.5 mg/kg Lead, Pb <1 mg/kg 1 Zinc, Zn mg/kg 2 <2.0 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Result Sample Number Parameter Units LOR LB154475.001 Arsenic, As µg/L 1 <1 Cadmium, Cd µg/L 0.1 < 0.1 Chromium, Cr <1 1 µg/L Copper, Cu µg/L 1 <1 Lead, Pb µg/L 1 <1 Nickel, Ni µg/L 1 <1 <5 Zinc, Zn µg/L 5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Result Units Sample Number Parameter LB154679.001 TRH C10-C14 20 <20 mg/kg TRH C15-C28 mg/kg 45 <45 TRH C29-C36 mg/kg 45 <45 TRH C37-C40 100 <100 mg/kg

<110

mg/kg

110

METHOD BLANKS

SE182724 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverab	le Hydrocarbons) in Water			Meth	od: ME-(AU)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result
LB154392.001		TRH C10-C14	µg/L	50	<50
		TRH C15-C28	µg/L	200	<200
		TRH C29-C36	µg/L	200	<200
		TRH C37-C40	µg/L	200	<200
VOC's in Soil				Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB154678.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	96
		d4-1,2-dichloroethane (Surrogate)	%	-	110
		d8-toluene (Surrogate)	%	-	124
		Bromofluorobenzene (Surrogate)	%	-	74
	Totals	Total BTEX	mg/kg	0.6	<0.6
VOCs in Water				Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB154459.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	101
		d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	97
		Bromofluorobenzene (Surrogate)	%	-	105
Volatile Petroleum Hyd	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB154678.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	96
		d4-1,2-dichloroethane (Surrogate)	%	-	110
		d8-toluene (Surrogate)	%	-	124
Volatile Petroleum Hyd	drocarbons in Water			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB154459.001		TRH C6-C9	µg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	108
		d4-1,2-dichloroethane (Surrogate)	%	-	106
		d8-toluene (Surrogate)	%	-	104
		Bromofluorobenzene (Surrogate)	%	-	94

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) i	n Water				Metho	d: ME-(AU)-[ENV]AN311(F	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182734.001	LB154385.008	Mercury	µg/L	0.0001	<0.00005	<0.00005	200	188

Mercury in Soil

Mercury in Soil						Meth	od: ME-(AU)-	ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.010	LB154680.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE182724.019	LB154680.024	Mercury	mg/kg	0.05	0.11	0.08	82	26

Moisture Content

Moisture Content					Meth	od: ME-(AU)-	ENVJAN002	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.010	LB154681.011	% Moisture	%w/w	0.5	6.4	6.0	46	7
SE182724.019	LB154681.021	% Moisture	%w/w	0.5	13	13.9223560910	37	6
SE182724.020	LB154681.023	% Moisture	%w/w	0.5	4.3	4.7	52	8

OC Peeticides in Soil

OC Pesticides in S	Soll					Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.011	LB154679.028	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
		Alpha BHC	mg/kg	0.1	<0.1	0	200	0
		Lindane	mg/kg	0.1	<0.1	0	200	0
		Heptachlor	mg/kg	0.1	<0.1	0	200	0
		Aldrin	mg/kg	0.1	<0.1	0	200	0
		Beta BHC	mg/kg	0.1	<0.1	0	200	0
		Delta BHC	mg/kg	0.1	<0.1	0	200	0
		Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
		o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
		Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
		Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
		Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
		trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
		p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
		Dieldrin	mg/kg	0.2	<0.2	0	200	0
		Endrin	mg/kg	0.2	<0.2	0	200	0
		o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
		o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
		Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
		p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
		p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
		Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
		Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
		Methoxychlor	mg/kg	0.1	<0.1	0	200	0
		Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
		Isodrin	mg/kg	0.1	<0.1	0	200	0
		Mirex	mg/kg	0.1	<0.1	0	200	0
		Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.18	0.183	30	2
OP Pesticides in S	oil					Meth	od: ME-(AU)-	ENVJAN420

OP Pesticides in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %	l
SE182724.009	LB154679.026	Dichlorvos	mg/kg	0.5	<0.5	0	200	0	
		Dimethoate	mg/kg	0.5	<0.5	0	200	0	
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	0	
		Fenitrothion	mg/kg	0.2	<0.2	0	200	0	
		Malathion	mg/kg	0.2	<0.2	0	200	0	
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.04	200	0	
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0.06	200	0	
		Bromophos Ethyl	mg/kg	0.2	<0.2	0.02	200	0	
		Methidathion	mg/kg	0.5	<0.5	0	200	0	
		Ethion	mg/kg	0.2	<0.2	0	200	0	
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0	
		Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	0	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

OP Pesticides in S	oil (continued)						Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724 009	L B154679 026	Surrogates	2-fluorobinhenvl (Surrogate)	ma/ka		0.4	0.4	30	0
021021210000	201010101020	Gunogatoo	d14-p-terphenyl (Surrogate)	mg/kg		0.4	0.4	30	3
SE182724 016	L B154679 025			mg/kg	0.5	<0.5	0.4	200	0
02102124.010	20104010.020		Dimethoate	mg/kg	0.5	<0.5	0	200	0
				mg/kg	0.5	<0.5	0	200	0
			Expitenthion	mg/kg	0.5	<0.3	0	200	0
			Malathian	nig/kg	0.2	<0.2	0	200	0
				mg/kg	0.2	<0.2	0	200	0
				mg/kg	0.2	<0.2	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0.07	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	7
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	5
PAH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD %
SE182724.009	LB154679.026		Naphthalene	mg/kg	0.1	0.1	0.12	113	0
			2-methylnaphthalene	ma/ka	0.1	<0.1	0.08	155	0
			1-methylnaphthalene	ma/ka	0.1	<0.1	0.06	197	0
			Acepaphthylene	ma/ka	0.1	0.1	0.1	117	26
				mg/kg	0.1	<0.1	0.03	200	0
			Fluorene	mg/kg	0.1	<0.1	0.03	163	0
			- Researcherse	nig/kg	0.1	<0.1	0.07	103	10
			Anthrono	піў/ку	0.1	0.9	0.76	42	10
			Anthracene	mg/kg	0.1	0.3	0.28	60	4
			Fluoranthene	mg/kg	0.1	1.6	1.36	37	19
			Pyrene	mg/kg	0.1	1.6	1.35	37	19
			Benzo(a)anthracene	mg/kg	0.1	1.0	0.69	42	32
			Chrysene	mg/kg	0.1	0.9	0.67	43	33
			Benzo(b&j)fluoranthene	mg/kg	0.1	1.1	0.9	40	22
			Benzo(k)fluoranthene	mg/kg	0.1	0.5	0.46	51	10
			Benzo(a)pyrene	mg/kg	0.1	1.0	0.88	41	15
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.5	0.44	51	17
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.04	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0.5	0.44	52	11
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td>1.3</td><td>1.1401</td><td>26</td><td>16</td></lor=0<>	mg/kg	0.2	1.3	1.1401	26	16
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td>1.4</td><td>1.2401</td><td>32</td><td>15</td></lor=lor<>	mg/kg	0.3	1.4	1.2401	32	15
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td>1.4</td><td>1.1901</td><td>25</td><td>16</td></lor=lor>	mg/kg	0.2	1.4	1.1901	25	16
			Total PAH (18)	mg/kg	0.8	10	8.45	39	19
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.36	30	5
		-	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	3
SE182724.016	LB154679.025		Naphthalene	mg/kg	0.1	<0.1	0.02	200	0
			2-methylnaphthalene	ma/ka	0.1	<0.1	0	200	0
			1-methylnaphthalene	ma/ka	0.1	<0.1	0	200	0
			Acenaphthylene	ma/ka	0.1	<0.1	0.03	200	0
			Acepaphthene	ma/ka	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	-0.1	0.11	117	0
			Anthroppo	mg/kg	0.1	-0.1	0.04	200	0
			Fluoranthene	mg/kg	0.1	-0.1	0.04	200	2 2
				mg/kg	0.1	0.3	0.34	57 57	<u> </u>
				mg/kg	0.1	0.4	0.37	5/	3
			Benzo(a)anthracene	mg/kg	0.1	0.2	0.23		14
				mg/kg	0.1	0.2	0.21	/8	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	0.22	80	20
			Benzo(k)fluoranthene	mg/kg	0.1	0.1	0.12	117	9
			Benzo(a)pyrene	mg/kg	0.1	0.2	0.2	83	11
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.1	141	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.01	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

pН

TRH C10-C36 Total

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear	AH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420										
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %		
SE182724.016	LB154679.025		Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.1	135	0		
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td>0.2</td><td>0.2691</td><td>90</td><td>15</td></lor=0<>	mg/kg	0.2	0.2	0.2691	90	15		
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td>0.3</td><td>0.3691</td><td>94</td><td>7</td></lor=lor<>	mg/kg	0.3	0.3	0.3691	94	7		
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td>0.3</td><td>0.3191</td><td>76</td><td>10</td></lor=lor>	mg/kg	0.2	0.3	0.3191	76	10		
			Total PAH (18)	mg/kg	0.8	1.7	1.99	73	16		
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.36	30	8		
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	7		
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	5		
PCBs in Soil							Meth	od: ME-(AU)-	ENVJAN420		
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %		
SE182724.011	LB154679.026		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0		
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0		
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0		
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0		
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0		
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0		
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0		
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0		
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0		
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0		
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.183	30	2		
pH in soil (1:5)							Meth	nod: ME-(AU)-	ENVJAN101		
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %		
SE182724.017	LB154726.021		pH	pH Units	0.1	7.2	6.617	31	9		

pH Units

0.1

110

mg/kg

<110

67

174

5.9

5.846

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

LB154726.022

Method: ME-(AU)-[ENV]AN040/AN320

32

0

		•						
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.010	LB154675.014	Arsenic, As	mg/kg	1	3	2	74	23
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.3	2.3	2.0	54	15
		Copper, Cu	mg/kg	0.5	6.7	7.7	37	14
		Nickel, Ni	mg/kg	0.5	1.9	2.0	56	2
		Lead, Pb	mg/kg	1	19	13	36	43 ②
		Zinc, Zn	mg/kg	2	27	18	39	41 @
SE182724.019	LB154675.024	Arsenic, As	mg/kg	1	4	6	49	30
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.3	8.5	10	35	18
		Copper, Cu	mg/kg	0.5	11	11	35	6
		Nickel, Ni	mg/kg	0.5	3.4	3.5	45	4
		Lead, Pb	mg/kg	1	210	57	31	116 @
		Zinc, Zn	mg/kg	2	54	68	33	24
Trace Metals (Dis	solved) in Water by ICPMS					Meth	od: ME-(AU)-	[ENV]AN318
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182734.001	LB154475.011	Arsenic, As	µg/L	1	1	1	104	0
		Cadmium, Cd	µg/L	0.1	<0.1	<0.1	189	0
		Chromium, Cr	µg/L	1	10	10	25	0
		Copper, Cu	µg/L	1	11	11	24	0
		Lead, Pb	µg/L	1	9	9	26	0
		Nickel, Ni	µg/L	1	3	3	47	2
		Zinc, Zn	µg/L	5	59	60	23	0
TRH (Total Recov	rerable Hydrocarbons) in Soil					Meth	od: ME-(AU)-	[ENV]AN403
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.009	LB154679.027	TRH C10-C14	mg/kg	20	<20	0	200	0
		TRH C15-C28	mg/kg	45	86	67	89	25
		TRH C29-C36	mg/kg	45	<45	0	200	0

SE182877A.012

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

o-xylene

Naphthalene

Dibromofluoromethane (Surrogate)

Polycyclic

Surrogates

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

TRH (Total Recov	erable Hydrocarbons	s) in Soil (continued)					Meth	od: ME-(AU)-	(ENVJAN40
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.009	LB154679.027		TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	110	80	127	16
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE182724.016	LB154679.025		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
VOC's in Soil							Meth	od: ME-(AU)-	(ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.010	LB154678.015	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.8	3.7	50	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.6	5.2	50	8
			d8-toluene (Surrogate)	mg/kg	-	5.8	5.7	50	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.6	3.7	50	3
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE182724.019	LB154678.032	Monocyclic	Benzene	mg/kg	0.1	<0.1	0	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0.03	200	0
			o-xylene	mg/kg	0.1	<0.1	0.01	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.2	4.57	50	8
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.8	5.84	50	1
			d8-toluene (Surrogate)	mg/kg	-	4.9	4.65	50	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.9	5.12	50	5
		lotals		mg/kg	0.3	<0.3	0.04	200	0
			TOTAL PLEX	тіў/ку	0.6	<0.0	0.04	200	0
VOUS IN Water	Dunlissts		Davamatar			Originat	Meth	lod: ME-(AU)-	
Original	Duplicate	Manageration	Parameter	Units	LOR	Original	Duplicate	Criteria %	- RPD %
SE182733.001	LB154459.020	Monocyclic	Benzene	μg/L	0.5	1.1	1.04	76	/
		Aromatic		µg/L	0.5	<0.5	0.13	200	0
				µg/L	0.5	<0.5	0.12	200	0
				hg/L	0.5	-0.5	0.12	200	0
		Delvevelie		hg/t	0.5	<0.5	0.07	200	0
		Surrogatas	Dibromofluoromethane (Surrocoto)	μg/L	0.5	~U.D	U.I	200	27
		Surroyates	d4.1.2 diableroothopo (Surrecete)	μg/L	-	5.4 E 4	4.09	3U 20	21
			de toluene (Surrogate)	μg/L	-	1.0	5.70	30	29
			Bromofluorobenzene (Surrogate)	μg/L	-	4.0	4 50	30	10
SE182734 001	I B154450 010	Monocyclic	Benzene	μg/L	0.5	4.0 <0.5	4.08 0.0	200	0
SE 1027 34.001	LD134439.019	Aromatic		μg/L	0.5	<0.0	0.2	160	0
		, a omado	Ethylbenzene	µ9/⊑	0.5	<0.5	0.04	200	0
			m/n-xvlene	µ9/⊑	1	-0.0	0.00	200	0
1				P8/L			v	200	v

µg/L

µg/L

µg/L

0.5

0.5

<0.5

<0.5

5.2

0

0

4.61

200

200

30

0

0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

VOCs in Water (c	ontinued)						Met	hod: ME-(AU)-	[ENV]AN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182734.001	LB154459.019	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.1	4.73	30	7
			d8-toluene (Surrogate)	μg/L	-	4.8	5.27	30	9
			Bromofluorobenzene (Surrogate)	μg/L	-	5.3	5.12	30	3
Volatile Petroleum	n Hydrocarbons in So	1					Met	hod: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.010	LB154678.015		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.8	3.7	30	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.6	5.2	30	8
			d8-toluene (Surrogate)	mg/kg	-	5.8	5.7	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.6	3.7	30	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE182724.019	LB154678.032		TRH C6-C10	mg/kg	25	<25	0	200	0
			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.2	4.57	30	8
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.8	5.84	30	1
			d8-toluene (Surrogate)	mg/kg	-	4.9	4.65	30	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.9	5.12	30	5
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	-0.04	200	0
Volatile Petroleum	n Hydrocarbons in Wa	ater					Met	hod: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182733.001	LB154459.020		TRH C6-C10	µg/L	50	<50	16.74	200	0
			TRH C6-C9	µg/L	40	<40	21.01	199	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.4	4.09	30	27
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.1	3.76	30	29
			d8-toluene (Surrogate)	µg/L	-	4.8	5.27	30	10
			Bromofluorobenzene (Surrogate)	µg/L	-	4.5	4.59	30	1
		VPH F Bands	Benzene (F0)	µg/L	0.5	1.1	1.04	76	7
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	15.26	200	0
SE182734.001	LB154459.021		TRH C6-C10	µg/L	50	<50	0	200	0
			TRH C6-C9	µg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.5	4.95	30	11
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.6	5.72	30	3
			d8-toluene (Surrogate)	μg/L	-	5.1	5.71	30	11
			Bromofluorobenzene (Surrogate)	μg/L	-	4.5	4.23	30	6
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.22	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	-0.69	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Ca	changeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) Method: ME-(AU)-[ENV]AN122						
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154426.002	Exchangeable Sodium, Na	mg/kg	2	NA	72.68	80 - 120	105
	Exchangeable Potassium, K	mg/kg	2	NA	238.12	80 - 120	106
	Exchangeable Calcium, Ca	mg/kg	2	NA	692	80 - 120	93
	Exchangeable Magnesium, Mg	mg/kg	2	NA	134.2	80 - 120	100
Mercury in Soil					N	lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154680.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	93

OC Pesticides in Soil

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154679.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	124
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	112
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	112
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	112
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	104
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	80
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.15	40 - 130	111
OP Pesticides in So	1					N	lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154679.002		Dichlorvos	mg/kg	0.5	1.8	2	60 - 140	90
		Diazinon (Dimpylate)	mg/kg	0.5	1.9	2	60 - 140	94
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	2	60 - 140	102
		Ethion	mg/kg	0.2	1.6	2	60 - 140	81
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96
PAH (Polynuclear A	romatic Hydrocarbo	ons) in Soil				N	lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154679.002		Naphthalene	mg/kg	0.1	4.2	4	60 - 140	105
		Acenaphthylene	mg/kg	0.1	4.1	4	60 - 140	103
		Acenaphthene	mg/kg	0.1	4.2	4	60 - 140	105
		Phenanthrene	mg/kg	0.1	4.5	4	60 - 140	112
		Anthracene	mg/kg	0.1	4.1	4	60 - 140	103
		Fluoranthene	mg/kg	0.1	4.9	4	60 - 140	122
		Pyrene	mg/kg	0.1	4.9	4	60 - 140	122
		Benzo(a)pyrene	mg/kg	0.1	4.0	4	60 - 140	100
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	78
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96
PCBs in Soil		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130 Nethod: ME-(A	96 U)-[ENV]AN420
PCBs in Soil Sample Number		d14-p-terphenyl (Surrogate) Parameter	mg/kg Units	LOR	0.5 Result	0.5 N Expected	40 - 130 Aethod: ME-(A Criteria %	96 U)-[ENV]AN420 Recovery %

pH in soil (1:5)

pH in soil (1:5)					N	lethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154726.003	pH	pH Units	0.1	7.4	7.415	98 - 102	100

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements	al Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320						
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154675.002	Arsenic, As	mg/kg	1	350	336.32	79 - 120	103
	Cadmium, Cd	mg/kg	0.3	420	416.6	69 - 131	101
	Chromium, Cr	mg/kg	0.3	30	35.2	80 - 120	85
	Copper, Cu	mg/kg	0.5	320	370.46	80 - 120	85
	Nickel, Ni	mg/kg	0.5	180	210.88	79 - 120	86
	Lead, Pb	mg/kg	1	94	107.87	79 - 120	87

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable F	Flements in Soil/W	aste Solids/Materials by ICPOES (continued)				Method	MF-(AU)-IENV	/IAN040/AN320
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
L B154675.002		Zinc Zn	ma/ka	2	280	301 27	80 - 121	93
Trace Metals (Disso	wed) in Motor by				200	001.27		
Trace Metals (Disso	oved) in water by			1.00	D "		Metriod: ME-(A	U)-[ENV]AN318
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154475.002		Arsenic, As	µg/L	1	20	20	80 - 120	98
		Cadmium, Cd	µg/L	0.1	19	20	80 - 120	96
			μg/L	1	19	20	80 - 120	96
		Logd Bb	μg/L	1	20	20	80 - 120	90
		Leau, FU	µg/L	1	10	20	80 - 120	96
			µg/L	5	20	20	80 - 120	102
TRH (Total Recover	rable Hydrocarbor	s) in Soil	P9/2		20	20	Method: MF-(A	U)-IENVIAN403
Sample Number	abio Hydrodarbol	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
L B154679 002		TBH C10-C14	ma/ka	20	30	40	60 - 140	75
EBIOIOIOIOE		TBH C15-C28	ma/ka	45	<45	40	60 - 140	75
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	75
	TRH F Bands	TRH >C10-C16	mg/kg	25	30	40	60 - 140	75
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	75
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
TRH (Total Recover	rable Hydrocarbor	s) in Water					Method: ME-(A	U)-IENVIAN403
Sample Number		Parameter	Units	LOR	Result	Expected	Critoria %	Recovery %
L B15/302 002			ug/l	50 EOK	1100	1200	60 - 140	05
LB134392.002		TRH C15-C28	µg/L	200	1300	1200	60 - 140	112
		TRH C29-C36	μg/L	200	1100	1200	60 - 140	90
	TRH F Bands	TRH >C10-C16	µg/L	60	1200	1200	60 - 140	100
		TRH >C16-C34 (F3)	ua/L	500	1300	1200	60 - 140	109
		TRH >C34-C40 (F4)	µg/L	500	520	600	60 - 140	86
VOC's in Soil							Method: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recoverv %
LB154678.002	Monocyclic	_						, , , , , , , , , , , , , , , , , , , ,
		Benzene	mg/kg	0.1	2.0	2.9	60 - 140	70
	Aromatic	Benzene Toluene	mg/kg mg/kg	0.1	2.0	2.9	60 - 140 60 - 140	70 87
	Aromatic	Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	2.0 2.5 2.1	2.9 2.9 2.9	60 - 140 60 - 140 60 - 140	70 87 71
	Aromatic	Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2	2.0 2.5 2.1 4.6	2.9 2.9 2.9 5.8	60 - 140 60 - 140 60 - 140 60 - 140	70 87 71 80
	Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1	2.0 2.5 2.1 4.6 2.1	2.9 2.9 2.9 5.8 2.9	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	70 87 71 80 74
	Aromatic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2 0.1	2.0 2.5 2.1 4.6 2.1 5.3	2.9 2.9 2.9 5.8 2.9 5.8 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	70 87 71 80 74 106
	Aromatic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 -	2.0 2.5 2.1 4.6 2.1 5.3 5.2	2.9 2.9 5.8 2.9 5.8 5 5 5	60 - 140 60 - 140	70 87 71 80 74 106 103
	Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2 0.1	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5	60 - 140 60 - 140	70 87 71 80 74 106 103 124
	Aromatic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5	60 - 140 60 - 140	70 87 71 80 74 106 103 124 104
VOCs in Water	Aromatic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5	60 - 140 60 - 140 80 - 140 Wethod: ME-(A	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433
VOCs in Water Sample Number	Aromatic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - - - LOR	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 Result	2.9 2.9 2.9 5.8 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Wethod: ME-(A Criteria %	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery %
VOCs in Water Sample Number LB154459.002	Aromatic Surrogates Monocyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L	0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 Result 50	2.9 2.9 2.9 5.8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110
VOCs in Water Sample Number LB154459.002	Aromatic Surrogates Monocyclic Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L	0.1 0.1 0.2 0.1 - - - - - LOR 0.5 0.5	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 Result 50 50	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110
VOCs in Water Sample Number LB154459.002	Aromatic Surrogates Monocyclic Aromatic	Benzene Toluene Ethylbenzene m/p-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L	0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 Result 50 50 50	2.9 2.9 2.9 5.8 5 5 5 5 5 5 Expected 45.45 45.45	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110
VOCs in Water Sample Number LB154459.002	Aromatic Surrogates Monocyclic Aromatic	Benzene Toluene Ethylbenzene m/p-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Enzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 Result 50 50 50 50 100	2.9 2.9 2.9 5.8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110
VOCe in Water Sample Number LB154459.002	Aromatic Surrogates Monocyclic Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Enzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 5.2 Result 50 50 50 50 50 50	2.9 2.9 2.9 5.8 5 5 5 5 5 5 5 5 5 5 5 5 	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110
VOCs in Water Sample Number LB154459.002	Aromatic Surrogates Monocyclic Aromatic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg g Units μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.2 6.2 5.2 5.2 Result 50 50 50 50 50 50 3.9	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 -	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 109 77
VOCs in Water Sample Number LB154459.002	Aromatic Surrogates Monocyclic Aromatic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d8-toluene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 5.2 Result 50 50 50 50 50 50 50 3.9 4.2	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5 Expected 45.45 45.45 45.45 90.9 45.45 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 -	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 110 9 77 83
VOCs in Water Sample Number LB154459.002	Aromatic Surrogates Monocyclic Aromatic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 Result 50 50 50 50 50 50 100 50 3.9 4.2 4.7	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5 Expected 45.45 45.45 45.45 90.9 45.45 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 -	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 110 93
VOCs in Water Sample Number LB154459.002	Aromatic Surrogates Monocyclic Aromatic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Beromofluorobenzene (Surrogate)	mg/kg mg/kg<	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.2 6.2 5.2 5.2 Result 50 50 50 50 50 50 50 50 3.9 4.2 4.7 5.2	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5 Expected 45.45 45.45 45.45 90.9 45.45 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 -	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 110 93 77 83 93 104
VOCs in Water Sample Number LB154459.002	Aromatic Surrogates Monocyclic Aromatic Surrogates Hydrocarbons In S	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluoromethane (Surrogate)	mg/kg mg/L mg/L mg/L mg/L mg/L <td>0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -</td> <td>2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 Result 50 50 50 50 50 50 50 3.9 4.2 4.7 5.2</td> <td>2.9 2.9 2.9 5.8 5 5 5 5 5 5 5 Expected 45.45 45.45 45.45 90.9 45.45 5 5 5 5 5 5</td> <td>60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 80 -</td> <td>70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 93 77 83 93 104 U)-[ENV]AN433</td>	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 Result 50 50 50 50 50 50 50 3.9 4.2 4.7 5.2	2.9 2.9 2.9 5.8 5 5 5 5 5 5 5 Expected 45.45 45.45 45.45 90.9 45.45 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 80 -	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 93 77 83 93 104 U)-[ENV]AN433
VOCs in Water Sample Number LB154459.002 Volatile Petroleum H Sample Number	Aromatic Surrogates Monocyclic Aromatic Surrogates Hydrocarbons In S	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/L mg/L mg/L mg/L mg/L	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 5.2 Result 50 50 50 50 50 50 50 50 50 4.2 4.7 5.2 Result	2.9 2.9 2.9 5.8 5 5 5 5 5 5 Expected 45.45 45.45 45.45 90.9 45.45 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 -	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 109 77 83 93 104 U)-[ENV]AN433
VOCs in Water Sample Number LB154459.002 Volatile Petroleum H Sample Number LB154678.002	Aromatic Surrogates Monocyclic Aromatic Surrogates Hydrocarbons In S	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg units μg/L	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 5.2 8 8 8 9 100 50 50 50 50 50 50 50 50 50 50 50 50 5	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5 45.45 45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Kethod: ME-(A) Kethod: ME-(A) K	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 109 77 83 93 104 U)-[ENV]AN433 Recovery % 89
VOCs in Water Sample Number LB154459.002 Volatile Petroleum I- Sample Number LB154678.002	Aromatic Surrogates Monocyclic Aromatic Surrogates Hydrocarbons In S	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate)	mg/kg units μg/L <	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.2 6.2 5.2 6.2 5.2 5.2 8 8 8 9 100 50 50 50 50 50 50 50 50 50 50 50 50 5	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5 45.45 45.45 45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 -	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 109 77 83 93 104 U)-[ENV]AN433 Recovery % 89 78
VOCs in Water Sample Number LB154459.002 Volatile Petroleum H Sample Number LB154678.002	Aromatic Surrogates Monocyclic Aromatic Surrogates Hydrocarbons In S Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Dibromofluoromethane (Surrogate) Dibromofluoromethane (Surrogate) Dibromofluorobenzene (Surrogate) Dibromofluorobenzene (Surrogate) Dibromofluorobenzene (Surrogate) Dibromofluoromethane (Surrogate) Dibromofluoromethane (Surrogate)	mg/kg µg/L µg/kg	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 6.2 5.2 6.2 5.2 5.2 7 8 8 8 9 100 50 50 50 50 50 50 50 50 50 50 50 50 5	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 Expected 45.45 45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5	60 - 140 60 - 1	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 110 93 77 83 93 104 U)-[ENV]AN433 Recovery % 89 78 106
VOCs in Water Sample Number LB154459.002 Volatile Petroleum H Sample Number LB154678.002	Aromatic Surrogates Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Jibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Dibromofluoromethane (Surrogate) DI Dibromofluoromethane (Surrogate) DI CI Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 6.2 5.2 5.2 7 8 6.2 5.2 5.2 7 50 50 50 50 50 50 50 50 50 50 50 50 50	2.9 2.9 2.9 5.8 5 5 5 5 5 5 5 Expected 45.45 45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 1	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 110 109 77 83 93 104 U)-[ENV]AN433 Recovery % 89 78 106 103
VOCs in Water Sample Number LB154459.002 Volatile Petroleum H Sample Number LB154678.002	Aromatic Surrogates Monocyclic Aromatic Surrogates Hydrocarbons In S Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluoromethane (Surrogate) Bromofluoromethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Brexene TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 6.2 5.2 5.2 7 8 6.2 5.2 7 50 50 50 50 50 50 50 50 50 50 50 50 50	2.9 2.9 2.9 5.8 5 5 5 5 5 5 5 Expected 45.45 45.45 45.45 45.45 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 -	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 110 110 109 77 83 93 104 U)-[ENV]AN433 Recovery % 89 78 106 103 124
VOCs in Water Sample Number LB154459.002 Volatile Petroleum H Sample Number LB154678.002	Aromatic Surrogates Monocyclic Aromatic Surrogates Hydrocarbons In S Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d5-toluene Ethylbenzene m/p-xylene o-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg	0.1 0.1 0.1 0.2 0.1 - - - - - - - - - - - - -	2.0 2.5 2.1 4.6 2.1 5.3 5.2 6.2 5.2 6.2 5.2 7 8 8 9 100 50 50 50 50 50 50 50 50 50 50 50 50 5	2.9 2.9 2.9 5.8 5 5 5 5 5 5 5 5 45.45 45.45 45.45 45.45 45.45 5 5 5	60 - 140 60 - 1	70 87 71 80 74 106 103 124 104 U)-[ENV]AN433 Recovery % 110 110 110 110 110 110 109 77 83 93 104 U)-[ENV]AN433 Recovery % 89 78 106 103 124 106

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Water Me							lethod: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154459.002		TRH C6-C10	µg/L	50	960	946.63	60 - 140	102
		TRH C6-C9	µg/L	40	790	818.71	60 - 140	96
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.2	5	60 - 140	84
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.2	5	60 - 140	84
		d8-toluene (Surrogate)	µg/L	-	4.9	5	60 - 140	97
		Bromofluorobenzene (Surrogate)	µg/L	-	4.9	5	60 - 140	97
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	650	639.67	60 - 140	102

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Pert							(Perth)/AN312	
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE182704.004	LB154385.004	Mercury	mg/L	0.0001	0.0068	<0.0001	0.008	85

Mercury in Soil

Mercury in Soil Metho					thod: ME-(Al	J)-[ENV]AN312		
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE182724.001	LB154680.004	Mercury	mg/kg	0.05	0.42	0.42	0.2	3 ④

OC Pesticides in Soil

OC Pesticides in	Soil						Me	othod: ME-(AU)-[E	ENVJAN4
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE182724.005	LB154679.027		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-	
			Alpha BHC	mg/kg	0.1	<0.1	-	-	
			Lindane	mg/kg	0.1	<0.1	-	-	
			Heptachlor	mg/kg	0.1	<0.1	0.2	125	
			Aldrin	mg/kg	0.1	<0.1	0.2	122	
			Beta BHC	mg/kg	0.1	<0.1	-	-	
			Delta BHC	mg/kg	0.1	<0.1	0.2	117	
			Heptachlor epoxide	mg/kg	0.1	<0.1	-	-	
			o,p'-DDE	mg/kg	0.1	<0.1	-	-	
			Alpha Endosulfan	mg/kg	0.2	<0.2	-	-	
			Gamma Chlordane	mg/kg	0.1	<0.1	-	-	
			Alpha Chlordane	mg/kg	0.1	<0.1	-	-	
			trans-Nonachlor	mg/kg	0.1	<0.1	-	-	
			p,p'-DDE	mg/kg	0.1	<0.1	-	-	
			Dieldrin	mg/kg	0.2	<0.2	0.2	109	
			Endrin	mg/kg	0.2	<0.2	0.2	125	
			o,p'-DDD	mg/kg	0.1	<0.1	-	-	
			o,p'-DDT	mg/kg	0.1	<0.1	-	-	
			Beta Endosulfan	mg/kg	0.2	<0.2	-	-	
			p,p'-DDD	mg/kg	0.1	<0.1	-	-	
			p,p'-DDT	mg/kg	0.1	<0.1	0.2	114	
			Endosulfan sulphate	mg/kg	0.1	<0.1	-	-	
			Endrin Aldehyde	mg/kg	0.1	<0.1	-	-	
			Methoxychlor	mg/kg	0.1	<0.1	-	-	
			Endrin Ketone	mg/kg	0.1	<0.1	-	-	
			Isodrin	mg/kg	0.1	<0.1	-	-	
			Mirex	mg/kg	0.1	<0.1	-	-	
			Total CLP OC Pesticides	mg/kg	1	<1	-	-	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.19	-	124	

QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%	
SE182724.005 LB1	LB154679.027	Dichlorvos	mg/kg	0.5	<0.5	2	84	
		Dimethoate	mg/kg	0.5	<0.5	-	-	
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	90	
		Fenitrothion	mg/kg	0.2	<0.2	-	-	
		Malathion	mg/kg	0.2	<0.2	-	-	
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	99	
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-	
		Bromophos Ethyl	mg/kg	0.2	<0.2	-	-	
		Methidathion	mg/kg	0.5	<0.5	-	-	
		Ethion	mg/kg	0.2	<0.2	2	76	
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-	
			Total OP Pesticides*	mg/kg	1.7	<1.7	-	-
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	84	
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	94	
PAH (Polynuclea	r Aromatic Hydrocarbons) in Soil					Me	thod: ME-(AU)-[E	

QC Sample	Sample Number	Parameter	Units	LOR

IVJAN420

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

C Sample	Sample Number	•	Paramotor	Unito	I OR	Original	Spike	Pacovorul	-
JC Sample	Sample Number		Parameter	Units	LOR	Original	Бріке	Recovery%	
E182724.005	LB154679.027		Naphthalene	mg/kg	0.1	<0.1	4	104	
			2-methylnaphthalene	mg/kg	0.1	<0.1	-	-	
			1-methylnaphthalene	mg/kg	0.1	<0.1	-	-	
			Acenaphthylene	mg/kg	0.1	<0.1	4	102	
			Acenaphthene	mg/kg	0.1	<0.1	4	106	
			Fluorene	mg/kg	0.1	<0.1	-	-	
			Phenanthrene	mg/kg	0.1	0.1	4	117	
			Anthracene	mg/kg	0.1	<0.1	4	113	
			Fluoranthene	mg/kg	0.1	0.2	4	109	
			Pyrene	mg/kg	0.1	0.2	4	111	
			Benzo(a)anthracene	mg/kg	0.1	<0.1	-	-	
			Chrysene	mg/kg	0.1	<0.1	-	-	
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	-	-	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	-	-	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	4	91	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-	
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td><td></td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>-</td><td>-</td><td></td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-	
			Total PAH (18)	mg/kg	0.8	<0.8	-	-	
	Su	urrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	-	82	
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	84	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	94	
s in Soil							Me	thod: ME-(AU)	-[ENV]AN
Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recoverv%	1
182724.005	LB154679.025		Arochlor 1016	ma/ka	0.2	<0.2	-	-	
L102724.005	20101010.020		Arochlor 1221	mg/kg	0.2	<0.2	-	-	
			Arochlor 1221	mg/kg	0.2	<0.2	_	-	
			Arochlor 1242	mg/kg	0.2	<0.2	_	-	
			Arochior 1248		0.2	<0.2	_	-	
			Arochlor 1254	mg/kg	0.2	<0.2	_	-	
			Arachlar 1260	mg/kg	0.2	<0.2	0.4	121	
			Arachlar 1260	mg/kg	0.2	<0.2	0.4	121	
			Arachlar 1268	mg/kg	0.2	<0.2			
			Total PCPa (Araphara)	mg/kg	0.2	<0.2	-	-	
		rrogatos	Totraphere m vulene (TCMX) (Surregate)	mg/kg		0	-	126	
	30	unogates	Tetrachioro-m-xylene (TCMX) (Surrogate)	IIIg/kg	-	0	-	120	J
I Recoverabl	e Elements in Soil/Waste S	Solids/Materia	als by ICPOES				Method: M	E-(AU)-[ENV]/	AN040/AN
Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
182724.001	LB154675.004		Arsenic, As	mg/kg	1	49	15	50	66 ④
			Cadmium, Cd	mg/kg	0.3	47	0.5	50	92
			Chromium, Cr	mg/kg	0.3	76	34	50	84
			Copper, Cu	mg/kg	0.5	99	50	50	98
			Nickel, Ni	mg/kg	0.5	100	59	50	86
			Lead, Pb	mg/kg	1	150	76	50	138 @
			Zinc, Zn	mg/kg	2	220	140	50	174 @
e Metals (Dis	ssolved) in Water by ICPM	s					Me	thod: ME-(AU)	
Sample	Sample Number		Parameter	Linite	I OR	Result	Original	Spike	Recove
182704 004				Units		27		20	114
02104.004	LD 10447 0.004		Codmium Cd	µy/∟	0.4	21	4	20	114
				µg/L	0.1	20	×0.1	20	100
				μg/L	1	20	<1	20	95
				μg/L 	1	17	2	20	74
				µg/L	1	22	2	20	101
			Nickel, Ni	µg/L	1	23	4	20	92
			Zinc, Zn	µg/L	5	28	10	20	89
(Total Reco	verable Hydrocarbons) in §	Soil					Me	thod: ME-(AU)	-[ENV]AN
				11					
Sam <u>ple</u>	Sample N <u>umber</u>		Parameter	Units	LUR				

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

TRH (Total Recoverable Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN403 e____Recovery% QC Sample Sample Number Units LOR Original Spi SE182724.002 LB154679.026 TRH C10-C14 mg/kg 20 32 40 80 TRH C15-C28 mg/kg 45 270 40 -205 ⑨ TRH C29-C36 45 <45 40 100 mg/kg TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total 110 310 mg/kg TRH C10-C40 Total (F bands) 210 350 mg/kg TRH F Bands TRH >C10-C16 50 40 mg/kg 25 48 (9) TRH >C10-C16 - Naphthalene (F2) 25 48 mg/kg TRH >C16-C34 (F3) 90 300 40 -220 (9 mg/kg TRH >C34-C40 (F4) mg/kg 120 <120 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Spike Recovery% Result QC Sample Sample Number Parameter Units Original SE182724.001 LB154678.004 0.1 2.5 <0.1 2.9 Monocyclic Benzene 85 mg/kg Aromatic Toluene mg/kg 0.1 2.9 < 0.1 2.9 99 Ethylbenze mg/kg 0.1 1.9 <0.1 29 64 0.2 4.2 <0.2 72 m/p-xylene 5.8 mg/kg o-xylene mg/kg 0.1 2.0 <0.1 2.9 68 5.4 4.1 109 Surrogates Dibromofluoromethane (Surrogate) mg/kg d4-1,2-dichloroethane (Surrogate) 4.9 4.1 99 mg/kg d8-toluene (Surrogate) mg/kg 6.3 4.4 126 Bromofluorobenzene (Surrogate) mg/kg 5.1 4.2 102 0.3 <0.3 Totals Total Xylenes 6.2 mg/kg Total BTEX mg/kg 0.6 13 <0.6 **VOCs in Water** Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Parameter LOR Result Original Spike Recovery% SE182724.022 LB154459.022 Monocyclic Benzene µg/L 0.5 44 <0.5 45.45 96 Aromatic Toluene µg/L 0.5 46 <0.5 45.45 101 48 Ethylbenzene 0.5 <0.5 45.45 105 µg/L 88 90.9 97 m/p-xylene µg/L 1 <1 o-xylene µg/L 0.5 40 <0.5 45.45 87 Polycyclic Naphthalene 0.5 51 <0.5 µg/L Surrogates Dibromofluoromethane (Surrogate) µg/L 4.8 6.0 95 d4-1,2-dichloroethane (Surrogate) µg/L 4.6 5.7 93 94 d8-toluene (Surrogate) µg/L 4.7 5.6 Bromofluorobenzene (Surrogate) 4.6 4.8 92 µg/L Method: ME-(AU)-[ENV]AN433 Volatile Petroleum Hydrocarbons in Soil Spike Recovery% QC Sample Sample Number LOR Result Parameter Units Original SE182724.001 LB154678.004 TRH C6-C10 25 <25 <25 24.65 97 mg/kg TRH C6-C9 mg/kg 20 <20 <20 23.2 81 Surrogates Dibromofluoromethane (Surrogate) 54 4.1 109 mg/kg d4-1,2-dichloroethane (Surrogate) 99 4.9 4.1 mg/kg d8-toluene (Surrogate) 6.3 126 ma/ka 4.4 Bromofluorobenzene (Surrogate) 5.1 4.2 102 mg/kg VPH F Benzene (F0) mg/kg 0.1 2.5 <0.1 TRH C6-C10 minus BTEX (F1) <25 7.25 131 Bands mg/kg 25 <25 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Recovery% Spike QC Sample Sample Number Result Origir Parameter Units LOR SE182724.022 LB154459.022 TRH C6-C10 50 820 946.63 86 <50 μg/L TRH C6-C9 µg/L 40 680 <40 818.71 82 Dibromofluoromethane (Surrogate) 4.8 6.0 95 Surrogates µg/L d4-1,2-dichloroethane (Surrogate) 4.6 93 µg/L 5.7 d8-toluene (Surrogate) µg/L 4.7 5.6 94 Bromofluorobenzene (Surrogate) 4.6 4.8 92 µg/L VPH F Benzene (F0) 0.5 44 <0.5 µg/L Bands TRH C6-C10 minus BTEX (F1) µg/L 50 550 <50 639.67 86

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number

Parameter

Units LOR

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Chris Sordy	Manager	Huong Crawford
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 95160722 (Not specified) christopher.sordy@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E23915-E02 - 242-244 Young St Waterloo E23915-E02 7	SGS Reference Date Received Date Reported	SE183173 R0 28 Aug 2018 04 Sep 2018

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date	pH in water	3 items
Analysis Date	pH in water	3 items

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	7 Water	
Date documentation received	28/8/2018	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	7.2°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard			

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Conductivity and TDS by Calcu	ulation - Water						Method: I	ME-(AU)-[ENV]AN106
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE183173.001	LB155386	24 Aug 2018	28 Aug 2018	21 Sep 2018	29 Aug 2018	21 Sep 2018	29 Aug 2018
BH9M-1	SE183173.002	LB155386	24 Aug 2018	28 Aug 2018	21 Sep 2018	29 Aug 2018	21 Sep 2018	29 Aug 2018
BH10M-1	SE183173.003	LB155386	24 Aug 2018	28 Aug 2018	21 Sep 2018	29 Aug 2018	21 Sep 2018	29 Aug 2018
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV	AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analvsis Due	Analysed
BH1M-1	SE183173.001	LB155391	24 Aug 2018	28 Aug 2018	21 Sep 2018	30 Aug 2018	21 Sep 2018	30 Aug 2018
BH9M-1	SE183173.002	LB155391	24 Aug 2018	28 Aug 2018	21 Sep 2018	30 Aug 2018	21 Sep 2018	30 Aug 2018
BH10M-1	SE183173.003	LB155391	24 Aug 2018	28 Aug 2018	21 Sep 2018	30 Aug 2018	21 Sep 2018	30 Aug 2018
GW-QD1	SE183173.004	LB155391	24 Aug 2018	28 Aug 2018	21 Sep 2018	30 Aug 2018	21 Sep 2018	30 Aug 2018
BHR-1	SE183173.005	LB155391	24 Aug 2018	28 Aug 2018	21 Sep 2018	30 Aug 2018	21 Sep 2018	30 Aug 2018
Metals in Water (Dissolved) by	/ ICPOES						Method:	ME-(AU)-IENVIAN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE183173.001	LB155413	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
BH9M-1	SE183173.002	LB155413	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
BH10M-1	SE183173.003	LB155413	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
PAH (Polynuclear Aromatic Hy	drocarbons) in Water						Method:	ME-(AU)-IENVIAN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE183173 001	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	03 Sep 2018
BH9M-1	SE183173 002	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	03 Sep 2018
BH10M-1	SE183173 003	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	03 Sep 2018
GW-OD1	SE183173.004	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	03 Sep 2018
BHR-1	SE183173.005	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	03 Sep 2018
pH in water							Method:	ME-(AU)-IENVIAN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analvsis Due	Analysed
BH1M-1	SE183173.001	LB155386	24 Aug 2018	28 Aug 2018	25 Aug 2018	29 Aug 2018†	25 Aug 2018	29 Aug 2018†
BH9M-1	SE183173.002	LB155386	24 Aug 2018	28 Aug 2018	25 Aug 2018	29 Aug 2018†	25 Aug 2018	29 Aug 2018†
BH10M-1	SE183173.003	LB155386	24 Aug 2018	28 Aug 2018	25 Aug 2018	29 Aug 2018†	25 Aug 2018	29 Aug 2018†
Total Phenolics in Water							Method:	ME-(ALI)-IENVIAN289
Samplo Namo	Sample No	OC Pof	Sampled	Pacaivad	Extraction Duo	Extracted	Analysis Duo	Analysod
	Sample NO.	UD Kei	Sampleu	28 Aug 2018	Extraction Due	Extracted	Allalysis Due	Analyseu
	SE103173.001	LB155620	24 Aug 2018	28 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	03 Sep 2018
	SE 103 173.002	LB 155620	24 Aug 2018	28 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	03 Sep 2018
DELION-1	3E103173.003	LB155020	24 Aug 2018	28 Aug 2018	21 Sep 2016	03 Sep 2018	21 Sep 2016	03 Sep 2018
Trace Metals (Dissolved) in Wa	ater by ICPMS						Method: I	ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE183173.001	LB155415	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
BH9M-1	SE183173.002	LB155415	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
BH10M-1	SE183173.003	LB155415	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
GW-QD1	SE183173.004	LB155415	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
BHR-1	SE183173.005	LB155415	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
TRH (Total Recoverable Hydro	carbons) in Water						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE183173.001	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	31 Aug 2018
BH9M-1	SE183173.002	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	31 Aug 2018
BH10M-1	SE183173.003	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	31 Aug 2018
GW-QD1	SE183173.004	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	31 Aug 2018
BHR-1	SE183173.005	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	31 Aug 2018
VOCs in Water							Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE183173.001	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
BH9M-1	SE183173.002	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
BH10M-1	SE183173.003	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
GW-QD1	SE183173.004	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
BHR-1	SE183173.005	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
GWQTB1	SE183173.006	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
GWQTS1	SE183173.007	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Water Me						Method: I	ME-(AU)-[ENV]AN433	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE183173.001	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
BH9M-1	SE183173.002	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
BH10M-1	SE183173.003	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
GW-QD1	SE183173.004	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
BHR-1	SE183173.005	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
GWQTB1	SE183173.006	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
GWQTS1	SE183173.007	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	64
	BH9M-1	SE183173.002	%	40 - 130%	72
	BH10M-1	SE183173.003	%	40 - 130%	70
d14-p-terphenyl (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	92
	BH9M-1	SE183173.002	%	40 - 130%	84
	BH10M-1	SE183173.003	%	40 - 130%	88
d5-nitrobenzene (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	50
	BH9M-1	SE183173.002	%	40 - 130%	60
	BH10M-1	SE183173.003	%	40 - 130%	62

VOCs in Water				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	105
	BH9M-1	SE183173.002	%	40 - 130%	106
	BH10M-1	SE183173.003	%	40 - 130%	106
	GW-QD1	SE183173.004	%	40 - 130%	86
	BHR-1	SE183173.005	%	40 - 130%	88
	GWQTB1	SE183173.006	%	40 - 130%	92
	GWQTS1	SE183173.007	%	40 - 130%	92
d4-1,2-dichloroethane (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	100
	BH9M-1	SE183173.002	%	40 - 130%	98
	BH10M-1	SE183173.003	%	40 - 130%	100
	GW-QD1	SE183173.004	%	40 - 130%	111
	BHR-1	SE183173.005	%	40 - 130%	120
	GWQTB1	SE183173.006	%	40 - 130%	112
	GWQTS1	SE183173.007	%	40 - 130%	95
d8-toluene (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	106
	BH9M-1	SE183173.002	%	40 - 130%	106
	BH10M-1	SE183173.003	%	40 - 130%	109
	GW-QD1	SE183173.004	%	40 - 130%	96
	BHR-1	SE183173.005	%	40 - 130%	106
	GWQTB1	SE183173.006	%	40 - 130%	98
	GWQTS1	SE183173.007	%	40 - 130%	91
Dibromofluoromethane (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	91
	BH9M-1	SE183173.002	%	40 - 130%	89
	BH10M-1	SE183173.003	%	40 - 130%	91
	GW-QD1	SE183173.004	%	40 - 130%	98
	BHR-1	SE183173.005	%	40 - 130%	107
	GWQTB1	SE183173.006	%	40 - 130%	97
	GWQTS1	SE183173.007	%	40 - 130%	83

Volatile Petroleum Hydrocarbons in Water

Volatile Petroleum Hydrocarbons in Water				Method: ME	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	97
	BH9M-1	SE183173.002	%	40 - 130%	93
	BH10M-1	SE183173.003	%	40 - 130%	85
	GW-QD1	SE183173.004	%	40 - 130%	86
	BHR-1	SE183173.005	%	40 - 130%	88
d4-1,2-dichloroethane (Surrogate)	BH1M-1	SE183173.001	%	60 - 130%	110
	BH9M-1	SE183173.002	%	60 - 130%	112
	BH10M-1	SE183173.003	%	60 - 130%	110
	GW-QD1	SE183173.004	%	60 - 130%	111
	BHR-1	SE183173.005	%	60 - 130%	120
d8-toluene (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	89
	BH9M-1	SE183173.002	%	40 - 130%	99
	BH10M-1	SE183173.003	%	40 - 130%	94
	GW-QD1	SE183173.004	%	40 - 130%	96
	BHR-1	SE183173.005	%	40 - 130%	106
Dibromofluoromethane (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	99
	BH9M-1	SE183173.002	%	40 - 130%	99
	BH10M-1	SE183173.003	%	40 - 130%	98
	GW-QD1	SE183173.004	%	40 - 130%	98

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Water (continued)					E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	BHR-1	SE183173.005	%	40 - 130%	107

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Water				od: ME-(AU)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result
LB155386.001	Conductivity @ 25 C	μS/cm	2	<2

Mercury (dissolved) in Water

Mercury (dissolved) in Water			Method: ME-(AU)-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB155391.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

PAH (Polynuclear Aromatic Hydrocarbons) in Water			Metho	d: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB155396.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	μg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	µg/L	0.1	<0.1
	Fluorene	μg/L	0.1	<0.1
	Phenanthrene	μg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
	Dibenzo(ah)anthracene	μg/L	0.1	<0.1
	Benzo(ghi)perylene	μg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	68
	2-fluorobiphenyl (Surrogate)	%	-	72
	d14-p-terphenyl (Surrogate)	%	-	90
Total Phenolics in Water			Metho	d: ME-(AU)-[ENV]AN289
Sample Number	Parameter	Units	LOR	Result
LB155620.001	Total Phenols	mg/L	0.05	<0.05

Trace Metals (Dissolved) in Water by ICPMS

made metale (Biodenre				mour	
Sample Number		Parameter	Units	LOR	Result
LB155415.001		Aluminium, Al	μg/L	5	<5
		Arsenic, As	µg/L	1	<1
		Cadmium, Cd	µg/L	0.1	<0.1
		Chromium, Cr	µg/L	1	<1
		Copper, Cu	µg/L	1	<1
		Lead, Pb	µg/L	1	<1
		Nickel, Ni	µg/L	1	<1
		Zinc, Zn	µg/L	5	<5
TRH (Total Recoverab	le Hydrocarbons) in Water			Meth	od: ME-(AU)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result
LB155396.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	µg/L	200	<200
VOCs in Water				Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB155586.001	Fumigants	2,2-dichloropropane	µg/L	0.5	<0.5
		1,2-dichloropropane	µg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5

Method: ME_(ALI)_JENV/JAN318

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	•			1.00	
Sample Number		Parameter	Units	LOR	Result
LB155586.001	Halogenated Aliphatics	Chloromethane	μg/L	5	<5
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3
		Bromomethane	μg/L	10	<10
		Chloroethane	μg/L	5	<5
		Trichlorofluoromethane	μg/L	1	<1
		lodomethane	μg/L	5	<5
		1,1-dichloroethene	µg/L	0.5	<0.5
		Dichloromethane (Methylene chloride)	μg/L	5	<5
		Allyl chloride	μg/L	2	<2
		trans-1,2-dichloroethene	ug/L	0.5	<0.5
		1.1-dichloroethane	µa/L	0.5	<0.5
		cis-1 2-dichloroethene		0.5	<0.5
		Bromochloromethane		0.5	<0.5
			μg/L	0.5	<0.5
			μg/L	0.5	<0.5
			pg/L	0.5	<0.5
			μg/L	0.5	<0.5
			μg/L	0.5	<0.5
		Dibromomethane	μg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	μg/L	0.5	<0.5
		1,3-dichloropropane	μg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5
		cis-1,4-dichloro-2-butene	μg/L	1	<1
		1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5
		1,2,3-trichloropropane	µg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	μg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	ug/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	ug/L	0.5	<0.5
		Bromobenzene	ua/L	0.5	<0.5
		2-chlorotoluene		0.5	<0.5
		4-chlorotoluene		0.5	<0.5
				0.5	<0.5
			μg/L	0.3	<0.2
			μg/L	0.5	<0.5
			pg/L	0.5	<0.5
		1,2,4-trichlorobenzene	μg/L	0.5	<0.5
		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	loluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
		Styrene (Vinyl benzene)	μg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
		n-propylbenzene	μg/L	0.5	<0.5
		1,3,5-trimethylbenzene	μg/L	0.5	<0.5
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene	μg/L	0.5	<0.5
		sec-butylbenzene	µg/L	0.5	<0.5
		p-isopropyltoluene	µg/L	0.5	<0.5
		n-butvlbenzene	ug/L	0.5	<0.5
	Nitrogenous Compounds	Acrylonitrile	μα/L	0.5	<0.5
		Acetone (2-propanone)	ېد برم/ا	10	<10
	CAYgenated Compounds	MtRE (Methyl tert, butyl ether)	μy'ι		-10
			μg/ι		~2
		Viriyi acetate	μg/L	10	<1U
			μg/L	10	<10
		мівк (4-methyl-2-pentanone)	μg/L	5	<5
		2-hexanone (MBK)	μg/L	5	<5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide	ua/L	2	<2

METHOD BLANKS

SE183173 R0

Method: ME-(AU)-[ENV]AN433

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continued)

Sample Number		Parameter	Units	LOR	Result
LB155586.001	Surrogates	Dibromofluoromethane (Surrogate)	%	-	100
		d4-1,2-dichloroethane (Surrogate)	%	-	114
		d8-toluene (Surrogate)	%	-	106
		Bromofluorobenzene (Surrogate)	%	-	92
	Trihalomethanes	Chloroform (THM)	μg/L	0.5	<0.5
		Bromodichloromethane (THM)	µg/L	0.5	<0.5
		Dibromochloromethane (THM)	µg/L	0.5	<0.5
		Bromoform (THM)	μg/L	0.5	<0.5
Volatile Petroleum Hydroca	rbons in Water			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB155586.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	100
		d4-1,2-dichloroethane (Surrogate)	%	-	114
		d8-toluene (Surrogate)	%	-	106
		Bromofluorobenzene (Surrogate)	%	-	92

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Conductivity and TDS	S by Calculation - Water					Meth	od: ME-(AU)-	[ENV]AN106
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183187.001	LB155386.014	Conductivity @ 25 C	µS/cm	2	3100	3200	15	2

curv (dissolved) in Water

Mercury (dissolved) i	in Water				Metho	d: ME-(AU)-[I	ENVJAN311(P	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183192.006	LB155391.014	Mercury	μg/L	0.0001	<0.0001	0.0000	200	40

Total Phenolics in Water

Total Phenolics in W	ater					Meth	od: ME-(AU)-[ENVJAN289
Original	Duplicate	Parameter	Units LC	DR	Original	Duplicate	Criteria %	RPD %
SE183169.001	LB155620.004	Total Phenols	mg/L 0.	05	<0.05	<0.05	200	0

Trace Metals (Disa	solved) in Water by IC	PMS					Mett	nod: ME-(AU)-	[ENV]AN318
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183173.005	LB155415.012		Arsenic, As	μg/L	1	<1	<1	200	0
			Cadmium, Cd	µg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	µg/L	1	<1	<1	200	0
			Copper, Cu	µg/L	1	<1	<1	200	0
			Lead, Pb	μg/L	1	<1	<1	200	0
			Nickel, Ni	μg/L	1	<1	<1	200	0
			Zinc, Zn	μg/L	5	<5	<5	200	0
TRH (Total Recov	erable Hydrocarbons) in Water					Met	nod: ME-(AU)-	(ENVJAN403
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183173.005	LB155396.022		TRH C10-C14	μg/L	50	<50	0	200	0
			TRH C15-C28	μg/L	200	<200	0	200	0
			TRH C29-C36	μg/L	200	<200	0	200	0
			TRH C37-C40	μg/L	200	<200	0	200	0
			TRH C10-C36	µg/L	450	<450	0	200	0
			TRH C10-C40	µg/L	650	<650	0	200	0
		TRH F Bands	TRH >C10-C16	µg/L	60	<60	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	0	200	0
			TRH >C16-C34 (F3)	µg/L	500	<500	0	200	0
			TRH >C34-C40 (F4)	µg/L	500	<500	0	200	0
VOCs in Water							Mett	nod: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183169.001	LB155586.023	Fumigants	1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	0	200	0
		Halogenated	1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	0	200	0
		Monocyclic	Benzene	μg/L	0.5	<0.5	0.04	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0.09	200	0
			Ethylbenzene	μg/L	0.5	<0.5	0.02	200	0
			m/p-xylene	μg/L	1	<1	0.1	200	0
			o-xylene	μg/L	0.5	<0.5	0.1	200	0
		Oxygenated	MEK (2-butanone)	μg/L	10	<10	0	200	0
		Compounds	2-hexanone (MBK)	μg/L	5	<5	0	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0.04	200	0

Dibromofluoromethane (Surrogate)

d4-1,2-dichloroethane (Surrogate)

Bromofluorobenzene (Surrogate)

Dibromofluoromethane (Surrogate)

d8-toluene (Surrogate)

Benzene

Toluene

Ethylbenzene

Naphthalene

m/p-xylene

o-xylene

Surrogates

Monocyclic

Aromatic

Polycyclic

Surrogates

SE183169.003

LB155586.024

11

14

12

21

0

0

0

0

0

0

1

4.8

5.3

5.7

5.6

<0.5

<0.5

<0.5

<1

<0.5

<0.5

4.9

-

0.5

0.5

0.5

1

0.5

0.5

_

µg/L

4.26

4.59

4.99

4.54

0.06

0.1

0.02

0.04

0.02

0.01

4.9

30

30

30

30

200

200

200

200

200

200

30

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (c	ontinued)						Meth	od: ME-(AU)-	[ENV]AN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183169.003	LB155586.024	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.6	5.03	30	10
			d8-toluene (Surrogate)	μg/L	-	4.8	4.77	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	4.6	4.01	30	13
Volatile Petroleum	Hydrocarbons in Wa	iter					Meth	od: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183169.001	LB155586.023		TRH C6-C10	µg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.2	4.26	30	21
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.9	4.59	30	25
			d8-toluene (Surrogate)	μg/L	-	5.3	4.99	30	5
			Bromofluorobenzene (Surrogate)	μg/L	-	4.8	4.54	30	5
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.04	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	-0.35	200	0
SE183169.003	LB155586.024		TRH C6-C10	μg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.9	4.9	30	1
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.6	5.03	30	10
			d8-toluene (Surrogate)	μg/L	-	4.8	4.77	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	4.6	4.01	30	13
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.06	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	-0.24	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation	nductivity and TDS by Calculation - Water					N	lethod: ME-(A	U)-[ENV]AN106
Sample Number	Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB155386.002	Conductivity @ 25 C		µS/cm	2	290	303	90 - 110	95

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB155396.002		Naphthalene		µg/L	0.1	32	40	60 - 140	81
		Acenaphthylene		µg/L	0.1	36	40	60 - 140	90
		Acenaphthene		µg/L	0.1	33	40	60 - 140	82
		Phenanthrene		µg/L	0.1	36	40	60 - 140	89
		Anthracene		µg/L	0.1	35	40	60 - 140	87
		Fluoranthene		µg/L	0.1	36	40	60 - 140	89
		Pyrene		µg/L	0.1	37	40	60 - 140	92
		Benzo(a)pyrene		µg/L	0.1	37	40	60 - 140	91
	Surrogates	d5-nitrobenzene (Surrogate)		µg/L	-	0.4	0.5	40 - 130	82
		2-fluorobiphenyl (Surrogate)		µg/L	-	0.5	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)		µg/L	-	0.5	0.5	40 - 130	94
pH in water							N	lethod: ME-(A	U)-[ENV]AN101
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB155386.003		pH**	Ν	lo unit	-	7.4	7.415	98 - 102	100

Total Phenolics in Water

Total Phenolics in Water				N	/lethod: ME-(A	U)-[ENV]AN289	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155620.002	Total Phenols	mg/L	0.05	0.24	0.25	80 - 120	95

Trace Metals (Diss	olved) in Water by	ICPMS				1	Method: ME-(A	U)-[ENV]AN318
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155415.002		Aluminium, Al	µg/L	5	18	20	80 - 120	90
		Arsenic, As	µg/L	1	20	20	80 - 120	100
		Cadmium, Cd	µg/L	0.1	19	20	80 - 120	97
		Chromium, Cr	µg/L	1	19	20	80 - 120	97
		Copper, Cu	µg/L	1	19	20	80 - 120	96
		Lead, Pb	µg/L	1	20	20	80 - 120	102
		Nickel, Ni	µg/L	1	19	20	80 - 120	96
		Zinc, Zn	μg/L	5	20	20	80 - 120	101
TRH (Total Recove	rable Hydrocarbo	ns) in Water					Method: ME-(A	U)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155396.002		TRH C10-C14	µg/L	50	1100	1200	60 - 140	91
		TRH C15-C28	µg/L	200	1400	1200	60 - 140	116
		TRH C29-C36	μg/L	200	1400	1200	60 - 140	116
	TRH F Bands	TRH >C10-C16	µg/L	60	1200	1200	60 - 140	96
		TRH >C16-C34 (F3)	µg/L	500	1600	1200	60 - 140	135
		TRH >C34-C40 (F4)	µg/L	500	610	600	60 - 140	102
VOCs in Water							Method: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155586.002	Halogenated	1,1-dichloroethene	µg/L	0.5	50	45.45	60 - 140	110
	Aliphatics	1,2-dichloroethane	µg/L	0.5	50	45.45	60 - 140	110
		Trichloroethene (Trichloroethylene, TCE)	µg/L	0.5	50	45.45	60 - 140	110
	Halogenated	Chlorobenzene	µg/L	0.5	50	45.45	60 - 140	110
	Monocyclic	Benzene	µg/L	0.5	50	45.45	60 - 140	110
	Aromatic	Toluene	µg/L	0.5	50	45.45	60 - 140	110
		Ethylbenzene	µg/L	0.5	50	45.45	60 - 140	110
		m/p-xylene	µg/L	1	100	90.9	60 - 140	110
		o-xylene	µg/L	0.5	50	45.45	60 - 140	110
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.1	5	60 - 140	81
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.1	5	60 - 140	83
		d8-toluene (Surrogate)	ug/l	_	4.8	5	60 - 140	96

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

/OCs in Water (continued) Method: ME-(AU)-[ENV]AN433									
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB155586.002	Surrogates	Bromofluorobenzene (Surrogate)	µg/L	-	5.0	5	60 - 140	100	
	Trihalomethan	Chloroform (THM)	μg/L	0.5	50	45.45	60 - 140	109	
Volatile Petroleum H				N	/lethod: ME-(A	U)-[ENV]AN433			
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB155586.002		TRH C6-C10	µg/L	50	940	946.63	60 - 140	100	
		TRH C6-C9	μg/L	40	770	818.71	60 - 140	94	
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.5	5	60 - 140	89	
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.4	5	60 - 140	88	
		d8-toluene (Surrogate)	µg/L	-	4.7	5	60 - 140	93	
		Bromofluorobenzene (Surrogate)	µg/L	-	4.9	5	60 - 140	97	
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	640	639.67	60 - 140	99	

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN3								
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE183169.001	LB155391.004	Mercury	mg/L	0.0001	0.0078	<0.0001	0.008	97

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Di	ssolved) in Water by	ICPMS					Мө	thod: ME-(AU)-[ENV]AN318
QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE183169.001	LB155415.004		Aluminium, Al	μg/L	5	240	230	20	79
			Arsenic, As	μg/L	1	21	<1	20	105
			Cadmium, Cd	µg/L	0.1	20	<0.1	20	98
			Chromium, Cr	μg/L	1	20	<1	20	94
			Copper, Cu	μg/L	1	31	14	20	89
			Lead, Pb	μg/L	1	21	<1	20	100
			Nickel, Ni	μg/L	1	22	4	20	91
			Zinc, Zn	μg/L	5	88	69	20	93
VOCs in Water							Me	thod: ME-(AU)-[ENV]AN433
QC Sample	Sample Number	r	Parameter	Units	LOR	Original	Spike	Recovery%	, 0
SE183169.002	LB155586.025	Monocyclic	Benzene	μg/L	0.5	<0.5	45.45	110	
		Aromatic	Toluene	µg/L	0.5	<0.5	45.45	109	
			Ethylbenzene	μg/L	0.5	<0.5	45.45	112	
			m/p-xylene	µg/L	1	<1	90.9	111	
			o-xylene	µg/L	0.5	<0.5	45.45	111	
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	-	-	
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.4	-	102	
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.0	-	116	
			d8-toluene (Surrogate)	μg/L	-	4.5	-	103	
			Bromofluorobenzene (Surrogate)	μg/L	-	4.3	-	99	
Volatile Petroleu	m Hydrocarbons in V	Vater					Me	thod: ME-(AU)-[ENV]AN433

	In Hydrocarbons in w	ater					INIC	ethod: ME-(AU)-[I
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE183169.002	LB155586.025		TRH C6-C10	μg/L	50	<50	946.63	86
			TRH C6-C9	μg/L	40	<40	818.71	89
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.4	-	102
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.0	-	116
			d8-toluene (Surrogate)	μg/L	-	4.5	-	103
			Bromofluorobenzene (Surrogate)	μg/L	-	4.3	-	99
		VPH F	Benzene (F0)	μg/L	0.5	<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	639.67	80

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

APPENDIX K SafeWork NSW Records

Locked Bag 2906, Lisarow NSW 2252 Customer Experience 13 10 50 ABN 81 913 830 179 | www.safework.nsw.gov.au

ACT C

Our Ref: D18/155466

17 July 2018

Mr David Rizkalla EI AUSTRALIA Suite 6.01, 55 Miller Street PYRMONT NSW 2009

Dear Mr Rizkalla

RE SITE: 242-244 Young Street, WATERLOO NSW 2017

I refer to your site search request received by SafeWork NSW on 3 July 2018 requesting information on Storage of Hazardous Chemicals for the above site.

Enclosed are copies of the documents that SafeWork NSW holds on record number 35/004633 relating to the storage of Hazardous Chemicals at the abovementioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email <u>licensing@safework.nsw.gov.au</u>

Yours sincerely

Customer Service Officer Customer Experience - Operations SafeWork NSW

A State State

Department of Industrial Relations

DANGEROUS GOODS ACT, 1975

APPLICATION FOR LICENCE (or AMENDMENT or TRANSFER of LICENCE)* FOR THE KEEPING OF DANGEROUS GOODS

(* delete whichever is not required)

				FEE: \$15.00 per Depot for r \$15.00 for amendmen	new licence. N/Fee						
Name of Appli 1 - Explanat	icant in full (see Item tory notes – page 4)	P.	ROWE FABRICS	PRY LIMITED							
Trading name name (if any	or occupier's ')	kon	NE FABRICS,								
Poștal Address		Po	PO BOX 206 WATER LOD, Postcode								
Address of the licensed. (In	premises to be cluding Street No.)	POWE	POWELL & YOUNG STREETS WATERLOO, Postcode 2017								
Nature of premises (See Item 2 – Explanatory notes – page 4)		WARE H	DUSE FOR FABRIS	and OFFICES.							
Telephone nur	nber of applicant	STD Code	02	Number 319 3399							
Particulars of t	type of depots and maxim	num quantit	ies of dangerous goods to be	kept at any one time.							
Depot number	Type of dep (See item 3 – Expl notes – page	ot anatory 4)	Storage capacity	Dangerous goods Product being stored	C & C Office use only						
l	Unleteraround	Tark	lomoi	PETROL							
2	1	<u>, , , , , , , , , , , , , , , , , , , </u>									

4	•										
5			·····	1.00.							
6				FILITING	<u>\</u>						
				by the the							
8				H ZARAMAN							
9				E B CT BE	III						
10				. Contraction	EN.						
11				And the set of the set	9						
12				CINITE IN							
Has site plan b Dangerous (been approved by the Goods Branch?	Yes No	If yes, no plans requ If no, please attach	lired. site plan, or provide sketch plan overle	af.						
Have premises	previously been licensed	1? Yes No	If, yes, state name o AMENOMEENTON	f previous occupier, and licence No. (if Ny - Depot 2 del	known). eteu						
Name of oil co	mpany supplying flamm	able liquid ((if applicable).	CALTEX.	· · · · · · · · · · · · · · · · · · ·						
For exfernal ex	plosives magazine(s), pl	Sign ease fill in pa	nature of applicant WUU age 3. Mici	the BALL Company Sec.	te 24/10/88.						
FOR OFFICE I, do hereby certi Regulation wit	USE ONLY) Cooller ibed above d	CERTIFICATE OF INSP to comply with the requirement uction for the keeping of dan	ECTION being an Inspector under the Dar nts of the Dangerous Goods Act, 1975, a gerous goods of the nature and in the	ngerous Goods Act, 1975, nd the Dangerous Goods						
Signature of In	ispector	ko		ate 28-2-89							
	-		RSZ (1)								

INFLAMMABLE LIQUID ACI, 1915

REGISTRATION OF PREMISES STORE LICENCE AMENDMENT TO REGISTRATION OR LICENCE FOR THE KEEPING OF INFLAMMABLE LIQUID AND/OR DANGEROUS GOODS.

Name of Occupier	P. Rowe Pty Limited	
	(Surname) (First	Names)
Trading Name (if any)		
Postal Address	Box 3455, G.P.O., SYDNEY	Postcode 2001
Address of the premises in which the depot or depots are	cnr Powell & Young Streets, WATERLOO	2017
situated		Postcode
Occupation	fabrics & automotive finishes	
Nature of Premises	warehouse & offices	

Particulars of construction of depots and maximum quantities of inflammable liquid and/or dangerous goods to be kept at any one time.

PLEASE SKETCH SITE ON BACK OR ATTACH PLAN

Depot	Cons	struction of depot	Inflammable Liquid				Dangerous Goods					
No.	Walls	Roof	Floor	Mineral spirit litres	Mineral oil litres	Class 1 litres	Class 2 litres	Class 3 kg	Class 4 m ³	Class 5A≉ litres	Class 5B# litres	Class 9 litres
1	brick	concrete	concrete	N. 1. el				2500				
2	brick	concrete	concrete	N-1.(1				2500				
3	brick	concrete	concrete	<u>N-1-U_</u>	100	00						
4	undergi	round tan	k	10000								
5												
6												
7												
8	·····											
9												
10	L							min	y www.yu	a inter a la com	5.11 I C	NIC
TOTAL												
* If	kept in tank	s describe der	oots as under	ground or	abovegr	ound ta	ınks.		eng	-/* °	<u>a</u>	
# In	sert water ca	pacity of tan	ks or cylinde	rs.				(Date) Receipt	No	387	7/0/	
Name of C	.ompany sup	ppiying initian	imable liquid		~ a P	1677	(7)					
Have pren	nises previou	sly been licen	sed?			<u>~~099</u>					·····	
lf known,	state name o	of previous oc	cupier	<u> </u>	• ROWE		0, FU	у ціш	itea			
Signature of applicant Quiterias Date 18.7.75												
V Insp. Metrop.												
CERTIFICATE OF INSPECTION												
I	Jacasa	e aul	w B	one	1	20110	- '		hein	o an In	spector	under th
Inflamma	ble Liquid A	Act, 1915, dc	hereby cer	tify that	the pren	nises or	store	describe	d abov	e does	compl	y with th
requireme	ents of that A	Act and regul	ations with a	egare to	its situat	ion and	l consti	ruction	for the	keepin	g of in	flammabl

Signature of Inspector

